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A particularly elusive puzzle concerning the hippocampus is how the structural differences along its long anteroposterior axis might
beget meaningful functional differences, particularly in terms of the granularity of information processing. One measure posits to
quantify this granularity by calculating the average statistical independence of the BOLD signal across neighboring voxels, or inter-
voxel similarity (IVS), and has shown the anterior hippocampus to process coarser-grained information than the posterior hippocam-
pus. This measure, however, has yielded opposing results in studies of developmental and healthy aging samples, which also varied in
fMRI acquisition parameters and hippocampal parcellation methods. To reconcile these findings, we measured IVS across two separate
resting-state fMRI acquisitions and compared the results across many of the most widely used parcellation methods in a large young-
adult sample of male and female humans (Acquisition 1, N = 233; Acquisition 2, N = 176). Finding conflicting results across acquisi-
tions and parcellations, we reasoned that a data-driven approach to hippocampal parcellation is necessary. To this end, we imple-
mented a group masked independent components analysis to identify functional subunits of the hippocampus, most notably
separating the anterior hippocampus into separate anterior-medial, anterior-lateral, and posteroanterior-lateral components. Measuring
IVS across these components revealed a decrease in IVS along the medial-lateral axis of the anterior hippocampus but an increase
from anterior to posterior. We conclude that intervoxel similarity is deeply affected by parcellation and that grounding one’s parcella-
tion in a functionally informed approach might allow for a more complex and reliable characterization of the hippocampus.
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Significance Statement

Processing information along hierarchical scales of granularity is critical for many of the feats of cognition considered most
human. Recently, the changes in structure, cortical connectivity, and apparent functional properties across parcels of the hip-
pocampal long axis have been hypothesized to underlie this hierarchical gradient in information processing. We show here,
however, that the choice of parcellation method itself drastically affects one particular measure of granularity across the hip-
pocampus and that a functionally informed approach to parcellation reveals gradients both within the anterior hippocampus
and in nonlinear form across the long axis. These results point to the issue of parcellation as a critical one in the study of the
hippocampus and reorient interpretation of existing results.

Introduction
It is a key challenge for our memory system to extract and store
general knowledge of the world while simultaneously retaining

details of the individual episodes that make it up. For example, after
seeing a number of shows at the jazz club downtown, one is able to
call on generalized representations to predict what the next set will
be like and identify similar music on the radio, all while being able
to precisely reconstruct where one sat during a particular perform-
ance on a rainy night 2 years ago. Previous work has proposed that
the processing of information at these hierarchical levels of detail
may be dependent on distinct functional specializations along
the long axis of the hippocampus (Poppenk et al., 2013;
Strange et al. 2014; Sekeres et al., 2018). Specifically, it has been
argued that hippocampal representations become increasingly
finer grained along the long axis, with integrative, coarse-grained
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representations in the anterior end and
differentiated, fine-grained representations
in the posterior end.

As a direct test of this proposed
gradient, Brunec et al. (2018) meas-
ured the average temporal correlation
across voxels, termed intervoxel simi-
larity (IVS), as a putative index of the
granularity of hippocampal informa-
tion processing. Mathematically, IVS
is the mean correlation between BOLD
activity time courses of all voxels within
a given region of interest (Fig. 1A).
Lower IVS values therefore indicate
that the temporal activation profiles
in voxels within a particular anatomic
region are relatively uncoupled from
each other, which has been taken to
reflect more distinct information process-
ing in adjacent voxels and therefore greater
representational granularity. Using this
measure, Brunec et al. (2018) reported
that during virtual navigation as well as
during rest, the anterior hippocampus
displayed higher IVS than the poste-
rior hippocampus, suggesting that the
anterior hippocampus may support
representations that are intrinsically
coarser-grained than in its posterior
counterpart.

Interestingly, other applications of IVS along the long axis have
found inconsistent results in both developmental (Callaghan et al.,
2021) and healthy aging (Stark, 2021) samples, namely, that IVS in
these populations increases from anterior to posterior hippo-
campus. A major roadblock in reconciling findings across the
long axis, however, is the variation in parcellation methods
used to divide the hippocampus into its constituent subregions.
Researchers have most typically divided the hippocampal long
axis into binary, ternary, and senary (Fig. 1B) parcellation
methods, the former two of which fall in line with structural and
genetic transitions, respectively (Poppenk et al., 2013; Strange et
al., 2014). Although much of the literature has assumed the
choice of parcellation method to be relatively trivial, a thorough
understanding of its impact is critical to proper interpretation of
functional measures like IVS.

In the current study, we first used a large resting-state sample
across two fMRI acquisition sequences (Acquisition 1, N = 233;
Acquisition 2, N = 176) to compare the pattern of IVS across the
hippocampus when using canonical parcellation methods (i.e.,
binary, ternary, senary). Although we should expect these pro-
portional parcels to provide a rough summary of the differences
across the long axis, it is unlikely to be the case that they have
perfectly localized the natural joints of the emergent functional
subunits we aim to study. Therefore, we adopted an additional
analytical approach in which we applied group masked inde-
pendent components analysis (mICA) to the resting-state
signals in the hippocampus, which essentially identifies the
spatial map that maximizes the statistical independence
across individual components (Blessing et al., 2016; Moher
Alsady et al., 2016; Blessing et al., 2020). We then compared
IVS across these functionally derived parcels, stepping closer
to a true characterization of functional gradients across the
hippocampus.

Materials and Methods
fMRI dataset
Analyses were performed on the Nathan Kline Institute Rockland
Sample, a lifespan cross-sectional dataset obtained at the Nathan Kline
Institute and made publicly available online (Nooner et al., 2012).
Participants were scanned on a SIEMENS 3T MRI scanner. A high-re-
solution 3D MPRAGE T1-weighted anatomic (TR = 1900ms, voxel
size = 1 mm isotropic, FOV = 250 mm) was first obtained, followed by
two separate resting-state scans with differing acquisition parameters.
The first resting-state scan (TR = 2500ms, TE = 30ms, voxel size = 3
mm � 3 mm � 3.5 mm, duration = 5min, FOV = 216 mm) is referred
to as Acquisition 1, and the second resting state scan (TR = 1400ms,
TE = 30ms, voxel size = 2 mm isotropic, duration = 10min, FOV =
216 mm, multiband acceleration factor 4) referred to as Acquisition 2
(Table 1). Participants were only instructed to keep their eyes open and
fixate on the screen for the duration of each scan.

fMRI preprocessing
The fMRI preprocessing steps we applied are in line with the pipe-
line used by Brunec et al. (2018), with the exception that Statistical
Parametric Mapping 12 (SPM12) was used rather than SPM8. In
Acquisition 1, functional images were slice-time corrected, real-
igned, and resliced in accordance with the mean functional image,
and coregistered to the space of the anatomic images. Acquisition 2
was preprocessed identically except that slice-time correction was
not performed because of its faster TR during multiband acquisition.
The anatomic images were then segmented into CSF and white matter
(WM) images, which were thresholded at 0.7 and 0.9 (Qing et al.,
2015), respectively, and eroded. These masks were used to extract CSF
and WM time series from the functional images. The six motion
regressors extracted from realignment as well as the CSF and WM time
series were then entered as multiple regressors in a denoising general-
ized linear model (GLM).

Conservative motion and BOLD interpolation
The residuals of this GLM (the denoised functional timeseries) were
then fed through a data interpolation method based on principal

Figure 1. Overview of methods. A, Diagram of IVS, the mean pairwise correlation of the entire time series of every voxel
within a given parcel of the hippocampus. Decreases in IVS are taken as indications of individual voxels being sensitive to more
distinct information and therefore processing representations with a higher granularity. B, Proportional parcellations split the
hippocampus (top) at roughly the uncal apex (binary parcellation), into even thirds (ternary parcellation), or into even sixths
(senary parcellation).
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components analysis (PCA; Campbell, 2013; Brunec et al., 2018).
Because our analysis of the heterogeneity of individual voxel time
series is sensitive to overly liberal interpolation, the method
employed here only interpolates a time point if both its motion
regressors and BOLD signal are significantly far from their own
medians (Campbell et al., 2013). First, PCAs were run on both the
matrix of six motion regressors over time and the matrix of voxel ac-
tivity over time. Then, for each time point, the squared, normalized
distance between the time point and the median of the surrounding
15 time points was calculated, resulting in a vector of distances from
the median for each time point for each matrix. A gamma distribu-
tion was then estimated for each vector, and the cumulative density
function estimated for each time point. Time points that had a p ,
0.05 in both the six motion regressors and the functional time series
were interpolated using spline interpolation. In other words, only
time points that were significant outliers in both their overall
motion and BOLD signal were removed and interpolated using sur-
rounding data points.

Proportional parcellations
To define a mask for each participant’s hippocampus, anatomic images
were segmented into subcortical structures using the recon-all function
in FreeSurfer (version 7.1.1; Fischl, 2012). These subcortical atlases were
then transformed back into native space, and the bilateral hippocampus
masks were extracted.

To mirror hippocampal parcellation approaches adopted by previ-
ous studies, we divided the hippocampus into subregions along the
long axis by following three separate parcellation methods. For our
binary parcellation, the hippocampus was divided into an anterior
third and a combined two-thirds of middle-plus-posterior (Fig. 1B,
left). This parcellation serves to approximate that used by Brunec et al.
(2018), who split the individual hippocampi at the uncal apex into an-
terior and posterior parcels, and is similar to previous specifications
(Poppenk et al., 2013; Brunec et al., 2020). For our ternary parcellation,
we divided the hippocampus into even anterior, middle, and posterior
thirds along the long axis (Collin, 2015; Tompary and Davachi, 2017;
Dandolo and Schwabe, 2018; Callaghan et al., 2021). Finally, we also
split the hippocampus into even sixths in a senary parcellation (Stark et
al., 2021).

Masked group independent components analysis
Although the proportional parcellations described above might offer
a rough approximation of unidimensional changes in granularity
across the long axis, they also rest on top-down assumptions about
how to identify meaningful hippocampal subunits. As such, also
sought to parcellate the hippocampus based on the observed struc-
ture of activity within its constituent voxels (i.e., in a data-driven
manner). Scans from 183 participants (for Acquisition 2) were submit-
ted to an mICA using Functional MRI of the Brain Software Library
(FSL) Multivariate Exploratory Linear Optimized Decomposition into
Independent Components (MELODIC) implemented with the mICA
toolbox (version 1.18). In the masked group ICA, a dimensionality of
10 was chosen based on previous research showing that 10 components
display the highest split-half reproducibility without overparcellating
the hippocampus (Blessing et al., 2016).

Extended fMRI preprocessing for group mICA
Because of multiband slicing artifacts present in Acquisition 2, data were
first cleaned using the FIX FSL package (version 1.06; Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014). The FIX FSL package essentially

functions by isolating individual components intrinsic to the data using
MELODIC ICA, classifying components as noise or signal, and regress-
ing noise components out of the data. We specifically implemented the
training dataset WhII_MB6 that comes with the FIX FSL package, which
closely aligned with the scan parameters from Acquisition 2 and used
the default threshold of 20% confidence to binarize signal from noise.
These cleaned functional images were only used for creating the group
parcellation, and IVS was still calculated using the original images.

The functional images cleaned using the FIX FSL package were then
smoothed using a smoothing kernel with a full-width half-maximum of
6 mm. A high-pass filter was then applied to the functional images with
a cutoff of 100 s. Functional images from all participants were then nor-
malized to the MNI avg152 T1-weighted template (2 mm isotropic
resolution).

Group masked ICA parcellation
We then implemented the group masked ICA, which concatenated all
183 functional images (from Acquisition 2) and masked them with the
Harvard-Oxford bilateral hippocampal mask thresholded at 50%, as in
previous studies (Blessing et al., 2016, 2020; Moher Alsady et al., 2016).
MELODIC ICA, with a dimensionality of 10, was then performed as
previously described. Briefly, the data were demeaned and normalized
by the voxelwise variance, projected into a 10-dimensional space using
probabilistic PCA, and decomposed into spatial maps and time series
using a fixed-point iteration technique optimizing for non-Gaussian
spatial distribution. The resulting group-level spatial maps of each
component were then divided by the SD of the residual noise and
thresholded with a mixture model fitted to the histogram of each com-
ponent to yield a z-transformed spatial map for each component. This
process therefore yields the spatial maps of 10 functionally derived par-
cels of the hippocampus.

Warping group masked ICA parcels into native space
To use these spatial maps as individual masks for parcellating the hip-
pocampus, each component was manually labeled based on the five
locations within the hippocampus, thresholded at 0.5, and binarized.
As the components from the ICA are not necessarily spatially cohesive
(i.e., they are not constrained to one contiguous region), all voxels that
were not spatially contiguous with the area containing the maximum z
score were erased using the FreeView edit function. The component
masks were then warped back into native space. To better align the
components with the hippocampus in native space, the full Harvard-
Oxford hippocampus mask was also warped into each participant’s
native space and linearly coregistered with the FreeSurfer hippocampal
mask used before. The registration matrix retrieved from this step was
then applied to each of the components, ensuring that each component
was as closely aligned to its true location in native space as possible.

To confirm that the components derived from the mICA were
indeed aligned properly within the FreeSurfer hippocampal mask, we
calculated the proportion of the component mask that overlapped with
the FreeSurfer mask for each participant and component. Any partici-
pant’s component not overlapping at least 70% with the FreeSurfer mask
was excluded from further analyses, although results were qualitatively
similar without this exclusion.

Extracting parcel time series
Voxelwise time series were then extracted from the functional image
using the hippocampal masks. This procedure produced a single time se-
ries for each voxel, scan, and participant in each of our hippocampal
parcels.

Controlling for parcel size and shape
To control for the variable sizes and shapes of the parcels, the average
distances between the location of each voxel and the center voxel were
calculated separately for each of the x, y, and z axes within each parcel,
acquisition, and participant as performed in Brunec et al. (2018). These
average distances were then converted into units of millimeters along
each dimension and later entered as parcel-level covariates in subsequent
mixed effects models.

Table 1. Scan acquisition parameters across studies

Acquisition TR (ms) TE (ms) Voxel size (mm) Duration (min) FOV

Brunec et al. (2018) 2000 24 3.5 � 3.5 � 3.5 6 20 cm2

Acquisition 1 2500 30 3 � 3 � 3.5 5 216 mm
Acquisition 2 1400 30 2 � 2 � 2 10 216 mm

Acquisition 1 more closely aligns with the scan parameters used during the resting-state analysis in Brunec
et al. (2018).
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Intervoxel similarity calculation and exclusion
criteria
All time series analyses were conducted using R
(version 3.5.0) and RStudio software. A correlation
matrix for each participant, hemisphere, and hip-
pocampal parcel was constructed by first z-scoring
the time series within each voxel, and then finding
the correlation of the time series of each voxel
with the time series of every other voxel within a
given mask. Using original code from Brunec et al.
(2018), the resulting correlation matrices were then
Fisher z-transformed, the diagonal and upper tri-
angle removed, and the mean of the resulting vec-
tor computed. This procedure resulted in one value
of IVS per hippocampal parcel, acquisition, and
participant. To protect against signal dropout, any
hippocampal parcel missing data from .30% of
voxels was also excluded.

Only scans with.0.55 mmmean frame displace-
ment were excluded from the analysis (Satterthwaite
et al., 2012). Because of a coding error, the mICA was
performed using scans with ,0.56 mm mean frame
displacement, so six subjects whose mean frame dis-
placement fell between 0.55 and 0.56 were included
in the mICA parcellation but excluded from the final
analysis. Our mICA parcellation visually replicates
previous iterations, and including these subjects in
the analysis does not change the results.

Finally, individual outlier values of IVS were
excluded by first grouping values by acquisition,
hemisphere, and parcel. Values that were far-
ther than 1.5 times the interquartile range of
this distribution from its median were assumed
to be because of scanner noise and excluded
from further analyses. This left N = 233 partici-
pants (116 females, 1 undisclosed, mean age
24.96, SD = 4.46) in Acquisition 1, and N = 176
participants (82 females, mean age 25.14, SD =
4.54) in Acquisition 2.

Statistical analyses
Mixed effects models predicting intervoxel simi-

larity. Linear mixed effects models were performed
using the lmer() function from the lme4 package
(Bates et al., 2015) in R. Separate models were run
per acquisition. For models used to compare ter-
nary and binary parcellation methods, IVS was
entered as the dependent variable; hemisphere
(effect coded left, �0.5; right, 0.5), parcel (ante-
rior, middle, middle-plus-posterior, posterior;
reference, anterior), and their interactions were
entered as independent variables. Models account-
ing for parcel size and shape included x_mean_dis-
tance, y_mean_distance, and z_mean_distance as
covariates (see above, Controlling for parcel size
and shape). All models included a random inter-
cept grouped by participant, as was done in Brunec
et al. (2018).

For our senary parcellation of even sixths, one
model was used to extract the parcelwise confi-
dence intervals (SE), and another was used to find
the slope and corresponding non-linear confidence
intervals (see Fig. 4). Note that the parcelwise con-
fidence intervals are only presented for visual pur-
poses, and all statistical analysis are performed on the confidence
intervals of the non-linear slopes. The first model was identical to those
described above, except for the inclusion of six rather than four levels
within the parcel variable (one, two, three, four, five, six; reference, one).
Mean distances along the x, y, and z axes were included as covariates.

The linear model used to calculate the slope of the line of best fit along
these parcels was the same as the one above except that the parcel factors
were converted to their quantitative equivalents (1, 2, 3, 4, 5, 6, respec-
tively) and were mean centered. Again, mean distances along the x, y,
and z axes were included as covariates. We also ran a quadratic model
that was the same as the linear model above except that it included a
squared axis term. We compared the linear and quadratic models by

Figure 2. Binary parcellation underestimates the intervoxel similarity of the middle and posterior subregions. A, In
line with Brunec et al. (2018), we find that similarity within the anterior parcel (yellow) is higher than that in the
middle-plus-posterior parcel (purple) across both acquisitions. B, After splitting the middle-plus-posterior parcel into its
constituent middle (red) and posterior (blue) parcels, as has been done previously, IVS seemed to be higher within the
anterior parcel than that in the posterior parcel across both acquisitions. Although, interestingly, IVS within the middle
parcel was lower than that in both the anterior and posterior parcels in Acquisition 1, in conflict with a linear decrease
along the long axis. C, Critically, however, the middle-plus-posterior parcel displayed a significantly lower IVS than both
its constituent middle and posterior regions across both acquisitions, suggesting that combining these subregions into
one misrepresents their apparent granularity. This last finding motivated our following analyses, which take the overall
parcel size and shape into account. Error bars represent 95% confidence intervals. ***ptukey , 0.001.
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likelihood ratio chi-square test to select the best fitting models. The
quadratic models provided a better fit to the data during both
Acquisition 1 [X2(2) = 9.52, p = 0.009] and Acquisition 2 [X2(2) = 12.11,
p = 0.002], so we therefore only report statistics from these quadratic
models. To estimate p values for the calculated slopes, degrees of free-
dom were approximated for each fixed effect using the same Kenward–
Roger method as for the estimated marginal means above.

The final mixed effects model was used to examine how IVS changed
between the components derived from the mICA and was the same as
the others above except for the factors within the parcel variable (ante-
rior-medial, anterior-lateral, posteroanterior-lateral, middle, posterior;
reference, anterior-medial). Again, mean distance along the x, y, and z
axes were entered as covariates.

To directly compare IVS values across hippocampal parcels within
hemisphere, the emmeans() function (https://CRAN.R-project.org/
package=emmeans) in R was used to extract estimated marginal means
for each parcel averaged across hemisphere from each model as well as
to run pairwise t tests between parcels. Degrees of freedom were
approximated using the Kenward–Roger method (Kenward and Roger,
1997), and p values were adjusted via Tukey’s method for comparing a
family of estimates of the given size (Tukey, 1949).

Data availability
Code for analyzing IVS and recreating figures is accessible at https://
github.com/jnthorp/ivs-parcels_open.

Results
Our first goal was to investigate how IVS changes along the long
axis of the hippocampus while specifically considering how these
results differ across the multiple hippocampal parcellation meth-
ods often adopted by researchers in this field. We began by com-
paring IVS across binary (anterior vs middle-plus-posterior) and
ternary (anterior vs middle vs posterior) parcellations, perform-
ing linear mixed effects regressions with a random intercept per
participant, mirroring the primary analysis from Brunec et al.
(2018). To directly compare IVS across hippocampal parcels,
pairwise t tests were run between estimated marginal means of
IVS computed for each parcel averaged across hemisphere. The
Tukey method was used to correct for multiple comparisons
within a family of four estimates (anterior, middle, middle-plus-
posterior, and posterior). Separate mixed effects models were
run for Acquisition 1 and Acquisition 2. Note that Acquisition 1
more closely aligns with the scan parameters implemented in
Brunec et al. (2018), whereas Acquisition 2 provides many more
voxels, TRs, and overall time points within each participant
(Table 1).

Intervoxel similarity decreases from anterior to posterior
hippocampus
We first aimed to replicate Brunec et al. (2018) by directly com-
paring IVS within the anterior parcel (yellow) to that in the mid-
dle plus posterior parcel (purple) across acquisitions (Fig. 2A).
We found that IVS within the anterior parcel was significantly
higher than that in the middle-plus-posterior parcel during both
Acquisition 1 (t(1428) = 14.95, ptukey , 0.001) and Acquisition 2
(t(1119) = 18.89, ptukey , 0.001), which indeed mirrors the pattern
observed during both resting-state and spatial navigation in
Brunec et al. (2018).

Next, we computed IVS within ternary parcels (Collin et al.,
2015; Dandolo and Schwabe, 2018; Callaghan et al., 2021) by
splitting the middle-plus-posterior parcel into its constituent
parts [middle (red) and posterior (blue) subregions]. As would
be predicted by the prior result, IVS within the anterior third
parcel remained higher than that in the posterior third parcel

during Acquisition 1 (t(1429) = 6.47, ptukey , 0.001) as well as
Acquisition 2 (t(1119) = 4.88, ptukey , 0.001; Fig. 2B).

U-shaped change in intervoxel similarity along ternary
parcels
Prior work examining the hippocampus with this ternary
approach has most typically provided evidence that the middle
hippocampus appears as a linear combination of what is seen in
the anterior and posterior hippocampus (Collin et al., 2015;
Dandolo and Schwabe, 2018; Callaghan et al., 2021). Thus, one
strong prediction might be that IVS should smoothly decrease
from anterior to middle to posterior hippocampus. Following
this prediction, we found that IVS within the anterior parcel
was significantly higher than that in the middle parcel during
Acquisition 1 (t(1425) = 11.27, ptukey , 0.001) as well as Acquisition
2 (t(1117) = 3.93, ptukey , 0.001; Fig. 2B). However, in contrast to
what would have been predicted by a linear gradient in granularity,
IVS within the middle parcel was also lower than that in the poste-
rior parcel during Acquisition 1 (t(1419) = �4.90, ptukey , 0.001),
although not during Acquisition 2 (t(1114) = 0.98 ptukey = 0.76).

The middle-plus-posterior parcel exaggerates the granularity
of its constituent subregions
To further unravel the systematic differences between these bi-
nary and ternary parcels, we next considered the relationship
between the apparent granularity measured within the combined
middle-plus-posterior parcel and that of its constituent middle
and posterior parcels (when calculated separately). We found
that the middle-plus-posterior parcel consistently displayed
lower IVS than that in the middle parcel during both Acquisition
1 (t(1414) = �3.78, ptukey , 0.001) and Acquisition 2 (t(1113) =
�15.20, ptukey , 0.001) as well as the posterior parcel during both
Acquisition 1 (t(1416) = �8.70, ptukey , 0.001) and Acquisition 2
(t(1112) =�14.21, ptukey, 0.001; Fig. 1C).

Table 2. Influence of model covariates on intervoxel similarity

Acquisition Parcellation Covariate B SE t

1 Ternary/binary Hemisphere 0.0021 0.0010 2.06
x �0.0019 0.0008 �2.31
y 0.0003 0.0006 0.59
z �0.0021 0.0007 �3.13

Senary Hemisphere 0.0029 0.0010 3.01
x �0.0004 0.0008 �0.50
y �0.0005 0.0008 �0.62
z �0.0023 0.0009 �2.42

2 Ternary/binary Hemisphere 0.0007 0.0003 2.15
x �0.0007 0.0003 �2.39
y �0.0002 0.0003 �0.83
z �0.0013 0.0003 �5.37

Senary Hemisphere 0.00061 0.0003 2.39
x �0.0007 0.0003 �2.96
y �0.0012 0.0007 �1.79
z �0.0026 0.0003 �8.28

mICA x �0.0025 0.0007 �3.60
y �0.0005 0.0005 �1.02
z �0.0036 0.0006 �6.28

Acquisition is as defined in Table 1. All models predicted intervoxel similarity with fixed effects of hemi-
sphere (effect coded), parcel, their interactions, three covariates corresponding to the average distance
between each voxel and the middle voxel along the x, y, and z axes, and a random intercept per subject.
Ternary/binary parcellation models compared intervoxel similarity between the anterior, middle, middle-
plus-posterior, and posterior parcels. Senary models compared intervoxel similarity across parcels of even
sixths. mICA compared intervoxel similarity across functionally derived components. B, Unstandardized beta
values. As the R function lmer() purposefully doesn’t calculate degrees of freedom within each regressor, t
values are shown without corresponding p values. SE, standard errors.
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This pattern of results suggests that
combining these potentially distinct
subregions into the same parcel and
correlating their voxel time series to-
gether may artificially lower the appa-
rent IVS within the unified parcel. In
other words, it may be that the low IVS
within the middle-plus-posterior region
is more directly caused by the mixing of
disparate signals from middle and
posterior hippocampus rather than
the individual voxels in this subregion
being relatively uncoupled from each
other. Not only does this overaccentuate
the difference in granularity between the
anterior and posterior subregions, it also
glosses over what may be a more com-
plex U-shaped gradient in processing
from anterior to middle to posterior
hippocampus.

Accounting for parcel size and shape
accentuates U-shaped change in
ternary parcels
One way to account for the overestima-
tion of the middle-plus-posterior parcel
of its own granularity is to add control
variables for the overall size and shape
of each parcel. Because we would expect
the time series of voxels anatomically
farther away from one another to be
less similar to each other, a parcel
that spans a longer distance along the
hippocampus may display a lower IVS
simply by nature of including voxels ana-
tomically farther apart. Thus, we imple-
mented a control analysis from Brunec et
al. (2018), which simply adds covariates
to each model to account for the spatial
size of each parcel along the x, y, and
z axes. Unstandardized betas for each
covariate are reported in Table 2. The
resulting model estimates therefore more
precisely represent the decoupling of
individual voxel time series from one
another, controlling for the average
anatomic distance between them.

Although IVS in the anterior parcel
remained higher than that in the middle-
plus-posterior parcel during Acquisition 1
(t(1521) = 4.29, ptukey , 0.001), consistent
with Brunec et al. (2018), this difference
was not statistically significant during
Acquisition 2 (t(1213) = 1.39, ptukey =
0.50; Fig. 3A). Similarly within our ter-
nary parcels, although IVS in the ante-
rior parcel remained higher than that in
the posterior parcel during Acquisition 1
(t(1551) = 3.87, ptukey , 0.001), this dif-
ference was again not statistically sig-
nificant during Acquisition 2 (t(1213) =
1.67, ptukey = 0.34; Fig. 3B). Across both
parcellation methods, therefore, apparent

Figure 3. Controlling for parcel size and shape reinforces a U-shaped change in granularity along the long axis. To account for the
discrepancies in length, width, and height among the different parcels, covariates for parcel size and shape were added to the mod-
els, as was accounted for in a later analysis in Brunec et al. (2018). A, After entering these covariates, we still found substantial evi-
dence for the original comparison between anterior and middle-plus-posterior in Acquisition 1, but not in Acquisition 2. B, In our
ternary parcels, the anterior parcel displayed a higher IVS than that in the posterior parcel in Acquisition 1, but not in Acquisition 2.
Across both acquisitions, however, IVS in the middle parcel was lower than that in both the anterior and posterior parcels, reinforcing
the U-shaped change along the long axis. C, As was the intended result of adding these covariates, no differences were found
between the middle-plus-posterior parcel and its constituent middle and posterior parcels, as these were completely accounted for by
their differences in size and shape. Error bars represent 95% confidence intervals. ***ptukey, 0.001. n.s. not significant.
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differences in granularity between anterior and posterior hippocam-
pus are left intact during Acquisition 1 but are well accounted
for by parcel size and shape during Acquisition 2.

In contrast, the addition of these parcel size and shape covari-
ates only served to strengthen the U-shaped change in IVS from
anterior to middle to posterior hippocampus. That is, IVS in the
middle parcel remained lower than that in the anterior parcel in
both Acquisition 1 (t(1564) = �10.17, ptukey , 0.001) and
Acquisition 2 (t(1243) = �5.60, ptukey , 0.001), as well as lower
than that in the posterior parcel in both Acquisition 1 (t(1594) =
�5.92, ptukey , 0.001) and Acquisition 2 (t(1232) = �3.41, ptukey =
0.004). As anticipated, the addition of these covariates also
accounted for the differences between middle-plus-posterior and
its constituent middle and posterior parcels (all ptukey values
. 0.12; Fig. 3C). Together, these results across acquisitions
seem to suggest that accounting for parcel size and shape rein-
forces a U-shaped gradient in IVS along the hippocampal long
axis.

Intervoxel similarity increases along senary parcels of even
sixths
To follow up on these results at a finer resolution, we performed
mixed effects linear regressions examining IVS across senary par-
cels of even sixths. As above, this model included fixed effect
covariates of mean distance along the x, y, and z axes and a ran-
dom intercept grouped by subject. Because we have just pre-
sented evidence of a U-shaped change from anterior to posterior,
we also ran models that included a quadratic term across parcels
interacting with hemisphere. We compared the linear and quad-
ratic models by likelihood ratio chi-square test to select the best
fitting models. The quadratic models provided a better fit to the
data during both Acquisition 1 [X2(2) = 9.52, p = 0.009] and
Acquisition 2 [X2(2) = 12.11, p = 0.002].

Directly conflicting with the findings in Stark et al. (2021) in
young adults, we found evidence of a linear increase along the
long axis (from anterior to posterior) in both Acquisition 1 (B =

0.096, t(2179) = 3.91, p, 0.001) as well as Acquisition 2
(B = 0.027, t(1746) = 4.30, p, 0.001). Although we did
not find evidence of quadratic change along the long
axis during Acquisition 1 (B = 0.031, t(2093) = 1.32, p =
0.19), we found substantial evidence during Acquisition
2 (B = 0.022, t(1757) = 3.42, p , 0.001). In other words,
modeling IVS linearly and quadratically using this sen-
ary parcellation showed IVS to be highest (least
granular) in posterior hippocampus, with a U-
shaped change from anterior to posterior that was
strongest in Acquisition 2. These inconsistent
results across parcellation methods and acquisi-
tions should suggest to us that slicing unilaterally
across the hippocampus may not be carving at the
most relevant joints. That is, just as the middle-
plus-posterior parcel may combine signals across
disparate middle and posterior subregions, it may
be the case that any of our typical, proportional
parcellation methods inadvertently combine data
across disparate clusters of functional activity.

Group masked independent components analysis
Our results thus far demonstrate that the proportional
parcellation techniques largely adopted by the field fall
short of characterizing the true functional subunits of
the hippocampus. As such, we next aimed to parcellate
the hippocampus based on the underlying structure
of the functional signals themselves. To this end, we ran

a group mICA (Blessing et al., 2016, 2020; Moher Alsady et al.,
2016) that effectively separates the hippocampus into the 10 com-
ponents that maximize the spatial independence between compo-
nents and the temporal coherence within components. Because of
the comparatively higher number of TRs in Acquisition 2, only
Acquisition 2 was submitted to the mICA and used in the follow-
ing set of analyses, which benefit greatly from more within-sub-
ject data. This procedure resulted in the bilateral hippocampi
being clustered into 10 distinct regions, five in each hemi-
sphere, as follows: three splitting the anterior hippocampus (an-
terior-medial, red; anterior-lateral, yellow; posteroanterior-
lateral, green), one in the middle hippocampus (light blue), and
one in the posterior hippocampus (dark blue; see Fig. 5A). Split-
half reproducibility analyses resulted in an average Pearson’s
correlation of 0.966 across components, showing that ran-
domly splitting the sample into discrete halves had virtually
no effect on the spatial layout of the components. Previous
work has shown 10 components to maximize this split-half
reproducibility correlation, with fewer than 10 components
leaving large parts of the hippocampus unassigned to a par-
ticular component and .10 components unnecessarily
splitting components into smaller, less reliable parcels
(Blessing et al., 2016).

To gain a better understanding of how granularity, as meas-
ured by IVS, might differ across these functional subregions, we
next calculated IVS within each component and ran a linear
mixed effects model predicting IVS by hippocampal component
and hemisphere. As above, this model included fixed effect cova-
riates of mean distance along the x, y, and z axes and a ran-
dom intercept grouped by subject. Because of the fact that the
mICA creates slightly different parcels across hemispheres,
we performed all t tests within hemisphere, implementing the
Tukey method to correct for a family of five tests in each
hemisphere.

Figure 4. Intervoxel similarity increases across parcels of even sixths. When modeled linearly, intervoxel
similarity shows a significant increase from anterior to posterior across parcels of even sixths in both acquis-
itions. Error bars are 95% confidence intervals within each parcel. Black lines indicate the estimated non-lin-
ear relationship. Gray ribbons represent 95% confidence intervals from non-linear model. *** p, 0.001.
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mICA finds a medial-lateral gradient within
anterior hippocampus
When looking at these functionally derived
components, we again found evidence of a U-
shaped gradient in IVS between the anterior-
medial component (red) and the posterior
component (blue; see Fig. 5B). IVS within the
posterior parcel was higher than that in the an-
terior-medial component (red) in the left
(t(1314) = 3.22, ptukey = 0.011) but not right
(t(1344) = 1.23, ptukey = 0.73) hemisphere, ante-
rior-lateral component (yellow) in the left
(t(1284) = 5.92, ptukey , 0.001) but not right
(t(1346) = 2.32, ptukey = 0.14) hemisphere, the
posteroanterior-lateral component (green)
in both the left (t(1318) = 7.42, ptukey ,
0.001) and right (t(1317) = 4.63, ptukey ,
0.001) hemispheres, as well as the middle
component (light blue) in both the left
(t(1304) = 7.63, ptukey , 0.001) and right
(t(1338) = 3.43, ptukey = 0.005) hemispheres.
IVS within the anterior-medial component
(red) was then higher than that in the mid-
dle component in the left (t(1270) = 4.60, ptukey
, 0.001) and right (t(1316) = 2.87, ptukey =
0.034) hemispheres.

Critically, we also found a decrease in IVS
along the medial-lateral axis of the anterior
hippocampus. That is, IVS within the anterior-
medial component was higher than that in the
posteroanterior-lateral component in both the
left (t(1281) = 4.16, ptukey , 0.001) and right
(t(1277) = 3.89, ptukey = 0.001) hemispheres, as
well as than that in the anterior-lateral
component in the left hemisphere (t(1255) =
2.87, ptukey = 0.034), although this differ-
ence was not significant in the right hemi-
sphere (t(1364) = 1.15, ptukey = 0.78). These
differences suggest what could be an impor-
tant axis within the anterior hippocampus
that has been left unexamined by typical proportional parcella-
tion methods.

Discussion
IVS is a measure of the statistical similarity of voxels within a
given subregion, with decreasing similarity indicating greater
informational capacity and therefore a finer grain of processing.
In the context of episodic memory, the intuition is that subre-
gions responsible for extracting features that overlap across epi-
sodes, objects, or larger temporal windows would contain voxels
that were responsive to similar information and therefore were
more temporally intertwined with one another. The degree of
this temporal similarity has thus been used to suggest that intrin-
sic dynamics of information processing across the long axis of
the hippocampus move from coarse-grained (high IVS) in the
anterior to fine-grained (low IVS) in the posterior. Here, we used
a large fMRI resting-state dataset to show that change in IVS
along the long axis varies widely with the adopted parcellation
method and seems to change along multiple gradients within
the hippocampus.

We found that IVS decreases along binary hippocampal par-
cels from anterior to middle-plus-posterior (Fig. 6, Binary), in

line with prior published reports. However, we also found that
considering the middle and posterior thirds of the hippocampus
as one middle-plus-posterior region artificially lowers the appa-
rent IVS, ultimately suggesting that the IVS within this binary
parcellation is not a reliable estimate of the true underlying signal
variance. Accounting for the size and shape of the individual par-
cels then resulted in a U-shaped change in IVS along ternary par-
cels, with the middle parcel displaying lower IVS than that in the
anterior and posterior parcels (Fig. 6, Ternary). A senary parcel-
lation into even sixths further complicated the story, with IVS
displaying a nonlinear increase from anterior to posterior hippo-
campus (Fig. 6, Senary), thereby suggesting the posterior hippo-
campus is actually coarser grained than its anterior counterparts
as has been found in both developmental (Callaghan et al., 2021)
and healthy aging (Stark et al., 2021) cohorts.

Thus, to take a step back, we came to the conclusion that
parcellations drawn onto structural landmarks (i.e., the binary
parcellation at the uncal apex) or genetic boundaries within
the rodent hippocampus (i.e., the ternary parcellation) were
not localizing the functional joints of the hippocampus. To
more carefully localize these subunits before attempting to
characterize them, we used a group mICA to identify hippo-
campal subregions that contain voxels with similar temporal coher-
ence. This data-driven parcellation revealed subregions analogous

Figure 5. Data-driven parcellation of functional signals reveals a medial-lateral gradient of intervoxel similarity within
the anterior hippocampus. A, Parcellation as derived from group mICA. Replicating earlier work, the mICA split each hemi-
sphere into anterior-medial (AM; red), anterior-lateral (AL; yellow), posteroanterior-lateral (PAL; green), middle, (M; light
blue), and posterior (P; dark blue) components. B, Because of differences in parcellation across hemispheres, we report dif-
ferences in intervoxel similarity in both hemispheres. Contrary to our findings using proportional parcellations, intervoxel
similarity was higher within the posterior parcel than that in the anterior-lateral, posteroanterior-lateral, and middle par-
cels across both hemispheres. Interestingly, intervoxel similarity within the anterior-medial parcel was higher than that in
the middle, posteroanterior-lateral, and anterior-lateral parcel within the left hemisphere, and higher than that in the
posteroanterior-lateral parcel in the right hemisphere. This suggests that processing granularity may differ along the
medial-lateral axis within the anterior hippocampus, a difference that was inaccessible using the proportional parcellations
used previously. Error bars represent 95% confidence intervals. *ptukey, 0.05. **ptukey, 0.01. ***ptukey, 0.001.

7438 • J. Neurosci., September 28, 2022 • 42(39):7431–7441 Thorp et al. · Intervoxel Similarity across the Hippocampus



to those found across prior published studies (Blessing et al.,
2016, 2020; Moher Alsady et al., 2016). Although this technique
by definition will identify hippocampal clusters with relatively
high levels of IVS, it is agnostic to differences in temporal co-
herence across distinct components, which is our measure of
interest. Critically, this approach revealed a novel differentia-
tion within the anterior hippocampus along its medial-lateral
axis as well as U-shaped change from anterior to posterior, with
IVS within the anterior-lateral and posteroanterior-lateral com-
ponents lower than that in both the anterior-medial and poste-
rior components (Fig. 6, mICA).

The principal takeaway from our findings, then, is simply that
hippocampal IVS is deeply affected by parcellation. More gener-
ally, that carving the hippocampus in a manner unrelated to
the underlying functional clustering fails to accurately repre-
sent its functional characteristics. Thus, it seems best to ground
one’s approach in a framework that doesn’t rely on genetic or
structural sign posts but rather the emergent organization of
the functional signals themselves. Such approaches of identify-
ing meaningful boundaries between regions of the brain have
proved extremely successful in the realm of cortical network
segmentation (Beckmann et al., 2005; Smitha et al., 2017; Bryce
et al., 2021) but have yet to be the default method in intrare-
gional parcellation. Of the concerted effort to parcellate the hip-
pocampus in a data-driven manner (Zarei et al., 2013; Voets et
al., 2014; Chase et al., 2015; Robinson et al., 2015; Wang et al.,
2016; Barnett et al., 2019; Cheng et al., 2020), most of the result-
ing methods have relied on clustering second-order consequen-
ces of the voxel timeseries (e.g., the IVS matrices used here,
hippocampo-cortical connectivity, univariate results across
studies) and have often replicated the proportional parcella-
tions already typical to the literature.

The mICA parcellation is therefore somewhat unique in deal-
ing directly with the voxel activity time series themselves, repeat-
edly uncovering a medial-lateral distinction within the anterior

hippocampus that seems to rest on the localization of the uncus
within the anterior-medial component (Zeidman and Maguire,
2016). Crucially, the formation of the uncus, via the rostromedial
inversion of the anterior hippocampus during embryonic de-
velopment, is distinctive to primates in that the strict genetic
demarcations found in the ventral hippocampus in rodents
may not be representative of any such demarcations in the pri-
mate hippocampus (Strange et al., 2014). This medial-lateral
distinction resonates with divergent findings where the ante-
rior hippocampus may, at times, integrate overlapping item
pairs during online concept formation (Davis et al., 2012a, b;
Bowman and Zeithamova, 2018; Mack et al., 2018; Viganò and
Piazza, 2021) or immediate memory retrieval (Ritchey et al.,
2015; Libby et al., 2018), whereas, at other times, differentiate
between specific items in memory (Tompary and Davachi, 2017;
Ezzyat et al., 2018; Cowan et al., 2021). It may be that these dis-
tinct medial-lateral components help to resolve this conflict.

It’s also worth noting the relatively consistent appearance of a
U-shaped change in IVS from anterior to posterior, both across
ternary parcels as well as our mICA components. Although we
resist interpreting any of this too deeply without evidence of be-
havioral implications or validation of IVS across other measures,
they raise an interesting question of whether it’s appropriate to
consider the middle hippocampus as simply a linear midpoint
between the anterior and posterior hippocampus on our meas-
ures of interest (Collin et al., 2015; Dandolo and Schwabe, 2018;
Callaghan et al., 2021). Future work is needed to explicitly probe
the role of this functional unit of the hippocampus within the
distributed memory system.

Limitations
IVS was first proposed to indicate more granular informa-
tion processing that would underlie coding of specific con-
textual or visuospatial details in memory representations.
The strongest interpretations of IVS have extended this
measure to reflect the essential, intrinsic dynamics of the
human hippocampus, ostensibly invariant to behavioral task
demands or representational content. Adopting that logic here
would extend our mICA parcellation results to be indicative of
hippocampal processing generally, with greater integration in
anterior-medial and posterior hippocampus and greater differ-
entiation in anterior-lateral, posteroanterior-lateral, and middle
hippocampus. Our varied results using proportional parcels,
however, make clear that strong interpretations of IVS might
be fragile to external factors. We therefore resist that level of
interpretation here. That is, we do not necessarily predict that
the patterns of IVS shown above are (1) stable features of the
hippocampus that (2) hold the same computational role across
every behavioral task, type of attended content, or motivational
state the hippocampus might represent or be involved in.

It is therefore also important to note that we have only used
one measure of spatiotemporal autocorrelation in this article,
and thus it is important to consider that other measures may
show stabler results across different parcellation methods. In pre-
vious work, IVS initially showed overlapping but nonequivalent
results with the temporal autocorrelation measure also proposed
in Brunec et al. (2018), particularly across smaller parcels in the
posterior hippocampus during rest. In very recent work, Bouffard
et al. (2021) showed that within-voxel temporal autocorrelation
was highest in the anterior-medial hippocampus and lowest in the
intermediate and posterior-lateral hippocampus. This convergence
with our measures within the anterior-medial hippocampus sug-
gests that this region should be considered distinct from the

Figure 6. Summary of intervoxel similarity findings within all parcellation methods.
Intervoxel similarity decreased along binary parcels, formed a U-shaped gradient along ter-
nary parcels, increased along senary parcels of even sixths, and within the mICA parcellation
both decreased along the medial-lateral axis within the anterior hippocampus and formed a
U-shaped gradient from anterior-medial to posterior.
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anterior-lateral hippocampus in the focus of future work. The
divergence between these two measures within the posterior hip-
pocampus raises the intriguing possibility that voxels within the
posterior hippocampus are relatively coherent with one another
while exhibiting high variance from one TR to the next, a possi-
bility that should only invite further inquiry into the characteris-
tics and consequences of these separate measures rather than
invalidate one in comparison to the other.

Because we do not hold ourselves to have uncovered an
essential state of the hippocampus, we are reticent to draw
strong functional conclusions from our resting-state findings.
We are excited to pursue these questions in the context of fMRI
tasks known to involve integration and differentiation within
the hippocampus, but we are not prepared to make the same
venture within a resting-state context. Future work should and
will compare these intrinsic measures to trait- or state-level
behaviors and, most importantly, examine how resting IVS is
related to IVS during tasks when the hippocampus is engaged.
By triangulating resting measures, behavior, and task respon-
sive patterns in distinct hippocampal subregions, future work
will be able to better understand how the hippocampal long
axis represents and encodes experiences.

To us, then, the evidence here simply shows how sensitive
neural measures are to one’s prior organizational assumptions,
and how complex and heterarchical the hippocampus can appear
when those assumptions are abandoned.
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