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Abstract Systems consolidation theories propose two mechanisms that enable the behavioral
integration of related memories: coordinated reactivation between hippocampus and cortex, and
the emergence of cortical traces that reflect overlap across memories. However, there is limited
empirical evidence that links these mechanisms to the emergence of behavioral integration over
time. In two experiments, participants implicitly encoded sequences of objects with overlapping
structure. Assessment of behavioral integration showed that response times during a recogni-

tion task reflected behavioral priming between objects that never occurred together in time but
belonged to overlapping sequences. This priming was consolidation-dependent and only emerged
for sequences learned 24 hr prior to the test. Critically, behavioral integration was related to
changes in neural pattern similarity in the medial prefrontal cortex and increases in post-learning
rest connectivity between the posterior hippocampus and lateral occipital cortex. These findings
suggest that memories with a shared predictive structure become behaviorally integrated through a
consolidation-related restructuring of the learned sequences, providing insight into the relationship
between different consolidation mechanisms that support behavioral integration.

Editor's evaluation

This important study investigates how memory representations are transformed over time (24h
period), using a novel behavioral task and fMRI. The work advances our understanding of the neural
processes supporting the behavioral integration of memories for distinct events that are never expe-
rienced together in time but are linked by shared predictive cues. Evidence supporting the claims is
convincing, with inclusion of important control analyses that lend support to the authors' interpreta-
tion of the data.

Introduction

There are now abundant demonstrations that after periods involving consolidation, episodic memories
undergo transformations that allow individuals to integrate across overlapping experiences. Examples
of enhanced behavioral integration with consolidation include transitive inference (Ellenbogen et al.,
2007, Lau et al., 2010; Werchan and Gémez, 2013), the extraction of statistical regularities (Wagner
et al., 2004, Durrant et al., 2011; Durrant et al., 2011; Sweegers et al., 2014; Batterink and Paller,
2017), category learning (Djonlagic et al., 2009, Graveline and Wamsley, 2017), and more (for
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reviews, see Chatburn et al., 2014, Lerner and Gluck, 2019). What neural transformations support
such consolidation-dependent integration across experiences?

Theories of systems-level consolidation posit that memories initially supported by the hippo-
campus become distributed across the cortex, through ongoing, coordinated reactivation of prior
experiences (Nadel et al., 2000; Squire et al., 1984). Through this reactivation, the memory traces
that are ultimately learned by cortex are thought to be highly structured and integrated repre-
sentations built up from many overlapping experiences (McClelland et al., 1995). One class of
theories posits that neural integration is accompanied by a psychological transformation such that
memories supported by cortex are more gist-like and reflect the shared aspects across multiple
events (Trace Transformation Theory (TTT); Sekeres et al., 2018a; Winocur et al., 2010). Thus,
systems-level consolidation theories point to two neural mechanisms that could support such
time-dependent behavioral integration of overlapping memories: (1) coordinated reactivation of
memory traces between the hippocampus and cortex after learning, and (2) the emergence of
cortical memory traces that reflect shared content across memories for different but overlapping
events. However, evidence for this is limited and, thus, it is unclear whether and how these two
mechanisms may jointly support the behavioral integration of overlapping experiences. Here, we
present a new behavioral protocol to probe the implicit integration of events with overlapping
content, and we use this protocol to investigate how cortical similarity and post-learning hippo-
campal-cortical coupling interact in supporting consolidation-dependent behavioral integration in
humans.

Integration and cortical similarity

According to TTT, the behavioral integration of related memories should be supported by the neural
integration of cortical memory traces that reflects their overlap. Previous work has already pointed to
medial prefrontal cortex (mPFC) as a key cortical region supporting integrated memories that emerge
without the aid of consolidation. For instance, damage to this region impairs key memory integra-
tion behaviors like associative inference in humans (Koscik and Tranel, 2012; Spalding et al., 2018,
Warren et al., 2014) and transitive inference in rodents (DeVito et al., 2010). Furthermore, activation
of this region and its connectivity with the hippocampus increases when encoding episodes containing
stimuli that overlap with recently learned information (Kuhl et al., 2010; Schlichting and Preston,
2016; Zeithamova et al., 2012), providing convincing evidence of its role in memory integration. Of
particular relevance to the current study, patterns of activity in mPFC become more correlated for
events linked through overlapping elements (Schlichting et al., 2015; Milivojevic et al., 2015) and
also carry information about the common structure across many learned relationships (Morton et al.,
2020; Schuck et al., 2016). With converging evidence spanning multiple species and methods is clear
that mPFC supports the acquisition and immediate expression of integrated memories.

However, there is much less evidence in humans that the neural representations in mPFC are
predictive of behavioral measures of memory integration over the course of systems-level consolida-
tion, despite such strong behavioral evidence of consolidation-dependent behavioral integration (e.g.
Chatburn et al., 2014) and the increasing involvement of mPFC in memory retrieval over time (Bonnici
et al.,, 2012, Frankland et al., 2004; Takashima et al., 2006, Takashima et al., 2009; Takehara-
Nishiuchi and McNaughton, 2008, Woodard et al., 2007). In other words, a direct link between
the two is lacking. There are some clues that such a relationship should exist. First, in rodents, neural
ensembles in mPFC become more selective for common features across two different associative
memories and less selective to features unique to each (Morrissey et al., 2017). Second, there is
evidence of delay-dependent changes in the content of memories in human mPFC (Sekeres et al.,
2018b; Krenz et al., 2023). Third, there is evidence for neural integration of related memories in this
region. Previously, we used a multi-variate pattern similarity approach to demonstrate that after a
week, neural patterns during the retrieval of overlapping memories grew more correlated (Tompary
and Davachi, 2017). Audrain and McAndrews, 2022 observed a similar increase in correlation of
overlapping memories over time in mPFC, although with notable differences in their protocol and
consequent findings (see Discussion). However, as neither group measured the behavioral integration
across those overlapping memories, the link between these time-dependent neural transformations
and behavioral integration remains unknown. Thus, despite its theorized role in the expression of
behaviorally integrated memories over time (Preston and Eichenbaum, 2013), to our knowledge,
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no other human research has examined how consolidation may organize memory traces in mPFC to
support their behavioral integration.

Integration and hippocampal-cortical coupling

Another fundamental component of systems-level consolidation theories is the coordinated reactiva-
tion of memory traces between the hippocampus and cortex after learning. One way to operationalize
such post-learning coordination is by measuring changes in the the correlation of their blood oxygen-
ation level dependent (BOLD) signals during resting-state functional magnetic resonance imaging
(fMRI) after encoding new memoranda (Tambini et al., 2010; van Kesteren et al., 2010, Tompary
et al., 2015; de Voogd et al., 2016; Gruber et al., 2016; Schlichting and Preston, 2016, Murty
et al.,, 2017, Liu et al., 2018, Tambini and D’Esposito, 2020; Audrain and McAndrews, 2022).
While hippocampal-cortical coupling is not a direct measure of the reactivation of specific memories,
memory-related patterns of coupling are specific to category-selective cortical regions (de Voogd
et al., 2016; Murty et al., 2017, Vilberg and Davachi, 2013) and emerge only in post-learning rest
periods rather than pre-learning ones, making rest connectivity a likely signature of coordinated reac-
tivation across hippocampus and cortex (Tambini and Davachi, 2019). The vast majority of studies
investigating post-learning rest connectivity find that the magnitude of experience-dependent change
relates to subsequent memory accuracy, with the exception of one demonstration that post-learning
connectivity relates to explicit associative inference (Schlichting and Preston, 2016). To our knowl-
edge, this is the only finding that relates post-learning rest connectivity to a measure of behavioral inte-
gration rather than memory accuracy of learned items, but it does not examine consolidation-related
changes as the integration test was administered a few minutes after learning. Furthermore, while a
handful of studies reveal relationships between post-learning rest connectivity and the neural integra-
tion of overlapping memories (Tompary and Davachi, 2017; Audrain and McAndrews, 2022), none
to our knowledge has examined how these neural measures, jointly or separately, support behavioral
integration. This leaves open the fundamental question of whether post-learning coupling supports
the neural transformation of memories that renders them more integrated with other, similar memo-
ries, as predicted by TTT.

Which cortical areas, and which regions of the hippocampus, might coordinate their processing to
support behavioral integration? Beginning with cortex, the earliest demonstration of post-learning
connectivity implicate the involvement of category-selective cortex (Tambini et al., 2010). Numerous
findings since then have shown that post-learning cortical connectivity with the hippocampus is
governed by the category of the encoded memoranda (Collins and Dickerson, 2019, Keller and Just,
2016; Murty et al., 2017; Schlichting and Preston, 2014; Vilberg and Davachi, 2013). Because our
stimuli are common objects, we focused on lateral occipital cortex (LOC), a region causally linked to
the formation of object memories (Tambini and D’Esposito, 2020). Surprisingly, while there is ample
evidence that hippocampal interactions with mPFC support integrative encoding (Zeithamova et al.,
2012) and retrieval of remote memories (Takashima et al., 2007; McCormick et al., 2015), there
is less evidence that hippocampal coupling with mPFC in post-learning periods leads to strength-
ening or integration of new memories (Tambini et al., 2010; although cf. Bein et al., 2014). More
commonly, post-learning hippocampal coupling with mPFC is related to updating and integrating of
memories that were either previously strongly learned, older, or consistent with prior knowledge (e.g.
van Kesteren et al., 2010; Schlichting and Preston, 2016; Liu et al., 2017, Cowan et al., 2020;
Audrain and McAndrews, 2022). Because we were interested in examining neural processes related
to the integration of newly learned information, we chose to focus on hippocampal interactions with
LOC over mPFC.

Turning to the hippocampus, while the bulk of post-learning connectivity investigations treat the
hippocampus as a unitary structure, there is some work that investigates differential connectivity
with cortical regions along its long axis. Here, there are observations that post-learning connectivity
between posterior hippocampus and category-selective cortical regions relate to memory for objects
and scenes (Murty et al., 2017, Tambini et al., 2010), whereas connectivity between anterior hippo-
campus and fusiform face area (FFA) has been shown to relate to memory for faces (Liu et al., 2018)
and to explicit associative inferences across stimuli including faces (Schlichting and Preston, 2016).
Connectivity with anterior or posterior hippocampus also depends on whether memory is rewarded,
with memory performance for low-reward items correlated with connectivity between posterior
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hippocampus and category-selective cortex and memory for high-reward items related to connectivity
between anterior hippocampus and category-selective cortex (Murty et al., 2017). Taken together,
the factors that may explain differential connectivity patterns along the long axis of the hippocampus
remain difficult to tease apart: possibilities include the form of behavior tested (memory for discrete
events versus integration across them), the cortical regions selective to the content of encoded mate-
rial, or the intrinsic or extrinsic motivation for consolidation. The present study employed object stimuli
and did not implement a reward manipulation, so we chose to focus on posterior hippocampus,
mirroring past experiments (Murty et al., 2017; Tambini et al., 2010). However, it is important to
note that we based this focus solely on offline connectivity findings. When considering how the long
axis of the hippocampus differentially supports memory integration, the anterior hippocampus is most
often implicated, albeit during more immediate or online integration of stimuli (Schapiro et al., 2012,
Schlichting et al., 2015; Ritchey et al., 2015). Given these differences in function along the long axis,
our choice of focusing on posterior hippocampus was exploratory.

Integration of sequential regularities

Rather than employing a more traditional explicit inference task, we generated sequences ending in
overlapping and distinct objects (i.e. paradigmatic relations; Luo and Zhao, 2018, McNeill, 1963).
We made this decision for several reasons: (1) the learning of statistical regularities relies on the
hippocampus and benefits from consolidation processes (Durrant et al., 2011; Durrant et al., 2013;
Turk-Browne et al., 2009; Schapiro et al., 2012; Schapiro et al., 2014), in line with predictions from
TTT, (2) a statistical learning protocol enabled us to develop a behavioral task that relied on response
times (RTs). In addition to statistical learning, RTs have been shown to reflect consolidation-dependent
memory integration across several domains, including lexical integration of novel word learning
(Bowers et al., 2005; Davis et al., 2009, Coutanche and Thompson-Schill, 2014), motor learning
(Kuriyama et al., 2004; Fischer et al., 2006), and category learning (Hennies et al., 2014), making
them an ideal readout of memory integration that minimizes potential on-the-fly retrieval strategies
that might inflate rates of integration (Abolghasem et al., 2023). RT measures were queried as a
function of cortical similarity and hippocampal-cortical connectivity.

In two experiments, participants viewed sequences of three objects in an incidental encoding
task. Each sequence was constructed such that the first two objects always appeared consecu-
tively (A and B), and the third object alternated between two objects (C, and C,; Figure 1C). We
reasoned that after repeated exposures to these sequences, participants would come to anticipate
the presentation of two different objects (C; and C,) upon encountering the beginning of each
sequence (A and B). This expectation would give rise to a link between objects C, and C, strictly
based on their shared antecedents. Thus, although C; and C, never co-occurred, we predicted that
the two objects would become associated through their overlapping preceding A and B objects.
We tested this prediction with a novel recognition priming task, which was developed to assess
the implicit behavioral integration of overlapping sequences while minimizing intentional retrieval
strategies at test. While we considered the priming task to be the main, planned index of behav-
ioral integration, we also included an exploratory explicit memory test for comparison with the
implicit test. Including both implicit and explicit memory tests also enabled us to explore changes
in memory behaviors that may be underpinned by different memory processes (Henke, 2010;
Abolghasem et al., 2023).

As a preview, we observed a delay-dependent priming effect such that behavioral integration of C
objects emerged 24 hr after learning. We developed Experiment 2 to replicate this effect and inves-
tigate its relationship with neural signatures of systems consolidation. In this experiment, the same
behavioral tasks were completed while participants underwent fMRI (note that the explicit test was
modified; see Results for more details). We investigated how the observed pattern of behavioral inte-
gration related to pattern similarity in mPFC as well as changes in rest connectivity between posterior
hippocampus and LOC. We predicted that neural patterns in mPFC would become more correlated
for objects from overlapping sequences, but only after a period of consolidation. We further predicted
that correlations between the hippocampus and LOC in rest connectivity would increase after learning,
and that both measures would relate to the extent of behavioral priming participants exhibited after
a delay. Finally, we examined the relationship between mPFC similarity and rest connectivity and their
association with behavioral priming.
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Figure 1. Experimental Design. (A) Experiment 1 design. Participants completed two learning sessions separated by 24 hr (blue = remote, green =
recent learning). (B) Experiment 2 design. The timing, instructions, and procedures for the learning and priming tasks were identical to Experiment 1,
with a modified but conceptually similar explicit memory task. Participants also completed pre- and post-learning exposure scans where all objects
from both learning sessions were presented in a randomly intermixed order. Three rest scans were added: a pre-learning scan at the start of Day 1, a
post-remote learning scan on Day 1, and a post-recent learning scan on Day 2. (C) In each learning session, participants performed a cover task as they
viewed objects embedded in triplets. All triplets were composed of two images that always appeared back-to-back (A and B) and two images that
alternated following the AB pair (C, and C,) with equal probability. Baseline objects were randomly inserted between triplets. Separate image sets were
presented in each learning session. After the recent learning session, participants completed recognition priming and explicit memory tests over all
objects intermixed from the two learning sessions (see Figure 2 for details of each test).

The online version of this article includes the following source data and figure supplement(s) for figure 1:
Figure supplement 1. AB recognition priming and explicit integration.
Figure supplement 1—source data 1. Response times and accuracy during learning.

Figure supplement 2. Average BOLD signal for predictable and unpredictable items across the eight learning runs, averaged over the recent and
remote learning sessions.

Figure supplement 2—source data 1. Average BOLD signal during learning.

Results

Learning
During learning, participants were instructed to evaluate if the currently viewed object was bigger or
smaller than the previous one. We used participants’ RTs to assess learning of the statistical structure
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embedded in the learning task and to confirm that sequence learning did not differ across the recent
and remote learning sessions. Because B predictably followed A and either C; or C, predictably
followed B, we reasoned that responses to B and C objects would be facilitated after repeated expo-
sures to their sequential structure, resulting in decreased RTs relative to A and baseline objects, which
were unpredictable. As an index of learning, we computed the RTs of participant’s size judgments as
a function of whether the response of each object could be predicted by the presentation of the prior
one.

Experiment 1

We computed the median RT of all A and baseline objects (unpredictable) and the median RT of all B
and C objects (predictable), for each participant’s 16 runs during each learning session. All trials were
included regardless of accuracy for the size judgments (see Methods for more information). These
values were entered into a mixed-effects linear model with repetition (continuous: 1-16), learning
session (discrete: recent, remote), predictability (discrete: predicted, unpredicted), and their inter-
actions as independent variables. This model revealed an effect of repetition (F, 4445 = 1070.17, p <
0.001), reflecting faster responses times as learning progressed, and an effect of predictability (F; 2324
=4.48, p = 0.04) such that participants responded more quickly to predictable objects over unpredict-
able ones. These two effects were qualified by an interaction (F1, 4u46 = 104.73, p < 0.001), reflecting
a steeper drop in RTs over learning for predictable objects relative to unpredictable ones (Figure 17—
figure supplement 1A). This confirms that participants learned the structure of the sequences, as by
the end of learning, responses were more facilitated by predictable objects over unpredictable ones.

The same model also revealed differences between the recent and remote learning sessions, with
an effect of learning session (F; 1199 = 17.63, p < 0.001) and an interaction between repetition and
learning session (F, 4ug = 4.57, p = 0.03). These effects were driven by overall slower RTs and a
steeper change in RTs across learning in the remote session relative to the recent one, suggesting that
responses in the recent session were in part driven by acclimation to the task. Critically, there was no
interaction between learning session and predictability or between learning session, predictability,
and repetition (both F's < 2.10, both p's > 0.14) suggesting that participants became sensitive to the
sequence structure and were faster to respond to predictable objects over unpredictable ones during
both sessions.

Average accuracy on the size judgment task was high (92.6%; SD = 12.5%). Changes in accuracy
over learning were analyzed with the same mixed-effects linear model with repetition (continuous:
1-16), learning session (discrete: recent, remote), predictability (discrete: predicted, unpredicted), and
their interactions as independent variables (Figure 1—figure supplement 1B). On average, accuracy
did not reliably differ by learning session, repetition, or predictability (all F's < 2.57, all p's > 0.11).
However, this model revealed several interactions: between repetition and predictability (F, 4449 =
7.82, p = 0.005), with higher accuracy for predictable objects over unpredictable objects toward the
end of learning relative to the beginning; between learning session and predictability (Fj;, 44 = 4.07,
p = 0.04), with a more pronounced difference in accuracy by predictability in the recent session over
the remote; and between repetition and learning session (F; 4ag = 9.72, p = 0.002), with a more
pronounced increase in accuracy over learning in the remote session relative to the recent one. Taken
together, this suggests that although size comparisons were overall very accurate, responses were
influenced by the predictability of the objects and the order of the learning sessions.

Experiment 2

Participants exhibited the same changes in RTs as in Experiment 1 (Figure 1—figure supplement 1A).
Participants became faster across repetitions (F 1459 = 354.21, p < 0.001) and for predicted relative
to unpredictable objects (Fj 4305 = 19.00, p < 0.001). Critically, the interaction between predictability
and repetition was replicated (Fj; 1459 = 34.66, p < 0.001) with more facilitated responses across repe-
titions for predictable relative to unpredictable objects. The same effects of learning session were
present as well: faster RTs during recent relative to remote sessions (F;, 4069 = 22.66, p < 0.001), and
a larger facilitation of RTs across repetitions in the remote session over the recent session (Fj; 159 =
32.16, p < 0.001). As in Experiment 1, there were no other interactions with learning session (both F's
< 2.65, both p’s > 0.10), suggesting that learning was equivalent across the two sessions.
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Average accuracy on the size judgment task was consistently high (95.3%; SD = 7.4%) and changes
in accuracy over learning were largely similar to those observed in Experiment 1 (Figure 1—figure
supplement 1B). Specifically, accuracy was modulated by an interaction between repetition and
predictability (Fy, 159 = 8.61, p = 0.003), reflecting higher accuracy for predictable over unpredictable
objects toward the end of learning, and an interaction between repetition and learning session (Fj;, 145
= 5.66, p = 0.02), with a more pronounced increase in accuracy over learning in the remote session
relative to the recent one. There were no reliable effects of learning session or predictability and no
other interactions (all F's < 0.99, all p's > 32), with the exception of an effect of repetition (Fj; 1459 =
713, p = 0.008) not observed in Experiment 1.

Recognition

As a reminder, although C; and C, were never experienced together in time, we predicted that the
two objects would become associated through their overlapping preceding A and B objects, and
that this across-sequence association would become strengthened over time. To test this prediction,
we developed a novel recognition priming task in which participants viewed all objects from both
learning sessions intermixed with novel foils and endorsed each as ‘old’ or ‘new’. Unbeknownst to the
participants, the order of the objects was manipulated to use response priming as a behavioral index
of participant’s implicit integration of C objects from overlapping sequences (Figure 2A, top). Specif-
ically, participants viewed a baseline object, then a C, object, then the C, object from its overlapping
sequence. Notably, during learning, these three objects were presented the same number of times
and never appeared in sequence. We developed mixed-effects models to examine differences in RTs
between C, objects, which were preceded by and thus primed by C;, and RTs for C; objects, which
were preceded by baseline objects and thus served as a control comparison (see Methods). To be
included in this priming analysis, each pair of C objects and the preceding baseline object must have
been correctly endorsed as ‘old’, meaning their responses during recognition were matched and thus
could not be slowed by pressing a different button. Furthermore, each object only appeared once
during recognition, as repeated presentations of objects may facilitate RTs and mask potential priming
effects. Note that C; and C, are not differentiable to participants, as during learning, they both follow
B an equal number of times and are presented within their sequence in a randomized and intermixed
order. We assigned them with separate labels for the sole purpose of clarifying the conditions of the
priming manipulation.

Experiment 1

Recognition accuracy across all objects approached perfect performance, as measured by A (Zhang
and Mueller, 2005), a non-parametric measure of sensitivity that integrates hits and false alarms
and can accommodate perfect performance (remote: mean A = 0.967, SD = 0.043; recent: mean A
= 0.967, SD = 0.045). A Wilcox signed-ranks test indicated no detectable difference across learning
sessions (V = 683.5, p = 0.48).

Because each participant had different numbers of trials included, mixed-effects linear models
were computed with RT (continuous) as the dependent variable and order (discrete: primed, control)
as a predictor, separately for recently and remotely learned objects (Figure 2A, bottom left). This
decision reflected our a priori prediction that remotely learned sequences would be more strongly
integrated over recently learned ones. Indeed, we found faster RTs for primed objects relative to
unprimed objects for the remotely learned objects (F, ¢443 = 7.97, p = 0.005) but not the recently
learned objects (F, 6912 = 0.37, p = 0.54). This finding suggests that objects that are linked by over-
lapping preceding sequences become associated over time. To assess if these effects were different
across the two learning sessions, a mixed-effects model was computed with order (discrete: primed,
control), learning session (discrete: recent, remote), and their interaction as predictors. This revealed
an effect of order (F; 7007 = 5.40, p = 0.02), no reliable effect of session (F, 4045 = 3.40, p = 0.07), and
no reliable interaction (F; 1295 = 2.54, p = 0.11). While we observed reliable priming only after 24 hr,
the lack of a statistical interaction suggests caution in interpreting this as an effect that emerges solely
after a delay.

In this task, the order of trials was the same for each sequence: a baseline object, C; (control
condition), and then C, (primed condition). The advantage of this approach is that every sequence
was tested without repeating any images, as repetition could facilitate responses and mask potential
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Figure 2. Recognition priming and explicit integration. (A, top) Recognition priming design. Studied and new objects were presented pseudo-
randomly such that each C, object followed the C, object from the same sequence, and the C, object followed a baseline object from the same
learning session. The behavioral integration of C, and C, was operationalized as the decrement in response time to C, (preceded by C,) relative to C,
(preceded by a baseline object). (A, bottom) Recognition priming results. Statistics reflect results from trial-level mixed-effects models, but participants
responses are aggregated to facilitate visualization of the effects. Black lines represent group averages. Gray lines represent median response times
for each participant. Error bars indicate standard error of the mean (SEM) across participants. ** indicates p < 0.01; * indicates p < 0.05. (B, left) Explicit
integration design. In Experiment 1, participants viewed intact and re-arranged pairs of C objects and rated their familiarity on a continuous scale
from ‘Not familiar at all’ to 'Very familiar’. All foils for re-arranged pairs were C objects from a different sequence learned in the same session. The
average difference in rating for intact versus re-arranged pairs served as a measure of explicit integration across overlapping sequences. In Experiment
2, participants performed a 2-alternative forced choice (2AFC) task with a C object as the cue and were asked to choose which object followed the
same pair of two objects as the cue. Foil images were C objects from a different sequence learned in the same session. (B, right) Explicit integration
results. Black lines represent group averages. Gray lines represent participants. Error bars indicate standard error of the mean (SEM) across participants.
Statistics reflect one-sample t-tests against chance performance. ** indicates p < 0.01; * indicates p < 0.05. Plots can be reproduced with data in 'Figure
2—source data 1' and 'Figure 2—source data 2'.
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The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Recognition priming.
Source data 2. Explicit integration.

Figure supplement 1. Plots can be reproduced with 'Figure 2—figure supplement 1—source data 1' and 'Figure 2—figure supplement 1—source
data 2'.

Figure supplement 1—source data 1. AB recognition priming.

Figure supplement 1—source data 2. AB explicit integration.

priming effects. However, if participants improved at this task with practice, faster responses over
the course of the task could explain the above priming effects—although notably, no priming was
observed for recently learned sequences, despite being susceptible to the same practice effect.
Regardless, we next ruled out the possibility that practice effects contributed to the priming effect for
remotely learned sequences by conducting the same mixed-effects model as above with trial order as
an additional continuous predictor. This analysis revealed an effect of trial order such that responses
grew faster over time (F 710229 = 9.74, p = 0.002). Critically, when accounting for this effect, we still
observed faster RTs for primed objects relative to unprimed objects (F, 190.11) = 6.732, p = 0.01).

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 8 of 38


https://doi.org/10.7554/eLife.84359

e Llfe Research article

Neuroscience

Experiment 2
Similar to Experiment 1, recognition accuracy across all objects was consistently high (remote: mean A
= 0.977, SD = 0.018; recent: mean A = 0.983, SD = 0.013) with a small but reliable decrease in accu-
racy for remotely learned objects relative to recently learned ones (V = 12.0, p = 0.04).

Priming analyses for participants in Experiment 2 primarily replicated findings from Experiment
1 (Figure 2A, bottom right). As in Experiment 1, we found faster RTs for primed trials relative to
control trials, for objects learned in the remote session (F;, 2416 = 5.70, p = 0.02) but not the recent
session (F1, 244.16 = 0.54, p = 0.46). However, a trial-level mixed-effects model including trials from both
sessions revealed an effect of order (F; 4592 = 4.65, p = 0.03), an effect of learning session (F;, 2343 =
5.81, p = 0.02), and no reliable interaction (Fj; 45900 = 1.27, p = 0.26). When accounting for trial order
in the remote condition, there was no reliable change in RTs across the task (F; 20807 = 1.03, p = 0.31),
and the effect of faster RTs for primed trials remained significant (F; gs91, = 5.26, p = 0.02).

Taken together, RTs from both cohorts reflect a behavioral association of objects from overlapping
sequences, despite never having been experienced at the same moments in time. This association
only emerges for the remotely learned sequences.

Explicit integration

Our primary, planned predictions involved the recognition priming task, as an implicit measure of asso-
ciation would minimize any contributions of active strategies or control processes that may contribute
to integration at retrieval. However, we also included exploratory explicit tests of memory integration
for comparison to other studies that report such tests (Figure 2B, left). In Experiment 1, we explored
a novel task that provided us with a continuous measure of integration. In Experiment 2, we modified
this task to a 2-alternative forced choice (2AFC) format more commonly used to investigate neural
measures underlying integration (Preston et al., 2004; Zeithamova et al., 2012), to enable more
direct comparison to prior work.

Experiment 1

In this task, participants viewed pairs of C objects that either followed the same A and B objects
(Intact) or were paired with different A and B objects (Re-arranged) during learning. They reported the
strength of their associative recognition of these pairs on a sliding scale. Behavioral integration was
operationalized as the average difference in familiarity between Intact and Re-arranged pairs. A value
of 0 indicates no discrimination and 1 indicates maximal discrimination between the two conditions.
We found significant evidence for integration (remote: mean = 0.044, SD = 0.142, t;, = 2.63, p = 0.01;
recent: mean = 0.034, SD = 0.139, tyq = 2.04, p = 0.046) with no reliable difference across learning
sessions (ty = 0.46, p = 0.65; Figure 2B, top right).

Experiment 2

Here, we tested explicit integration with a 2AFC task with a C object as the cue, the C object from
the overlapping A and B sequences as the target, and a C object from a different sequence as the
foil. We computed the proportion of trials in which participants chose the overlapping C object, with
performance at 0.5 indicating chance-level performance. Integration was above chance for objects
learned remotely (mean = 0.628, SD = 0.149, t,; = 4.21, p < 0.001) and recently (mean = 0.635, SD =
0.155, t3 = 4.28, p < 0.001) with no difference across the two learning sessions (s = —0.22, p = 0.83;
Figure 2B, bottom right). These results serve as a conceptual replication of Experiment 1, as both
cohorts exhibited weak integration between C objects that did not change over time. Interestingly,
these results differ from the priming findings, which revealed behavioral integration only after a delay.
Potential accounts for this discrepancy are considered in the Discussion.

Experiment 2: pattern similarity

Participants in Experiment 2 completed a modified set of procedures from Experiment 1 while under-
going fMRI (Figure 1B, see Methods). Specifically, their procedure included a pre- and post-learning
exposure phase in which they viewed all object images from the recent and remote learning sessions,
and three scans capturing periods of rest occurring pre-learning, post-recent learning, and post-remote
learning. In this section, we focus on the pre- and post-learning exposure scans (Figure 3A) in which
participants pressed a button when a hash tag appeared in any image. Presenting images before and
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Figure 3. Learning- and consolidation-dependent changes in mPFC neural integration. (A) Analysis approach for exposure scans. Vectors of multi-
variate activation were extracted from a medial prefrontal cortex (mMPFC) region of interest (ROI) for each C object and correlated with vectors for all C
objects from overlapping and distinct sequences viewed in the same learning session (recent and remote). These correlation matrices were correlated
with an ‘integration model’ reflecting greater similarity for C objects belonging to an overlapping sequence (i.e. objects that followed the same AB
sequence). This analysis was repeated for both exposure phases and subtracted (post- minus pre-learning exposure) to create change scores. (B)
Average fit to the integration model for the pre- and post-learning exposure phases in mPFC, separately for recently and remotely learned sequences.
Values <0 indicate a worse fit to the model, meaning more differentiation between C objects from overlapping sequences relative to C objects from
different sequences (see also Figure 3—figure supplement 1). Gray lines indicate participants. Black line indicates group average. Error bars reflect
standard error of the mean (SEM). ** indicates p < 0.01. (C) Correlation between the average change in the fit to the integration model in mPFC and
average recognition priming across participants, separately for recent and remote learning. Dots indicate participants. Lines indicate line of best fit.
Plots can be reproduced with 'Figure 3—source data 1.csv' and 'Figure 3—source data 2.csv'.

The online version of this article includes the following source data and figure supplement(s) for figure 3:
Source data 1. mPFC fit to neural integration model.
Source data 2. mPFC neural integration related to recognition priming.

Figure 3 continued on next page
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Figure supplement 1. Average similarity across C; and C, items in overlapping sequences (left) and non-overlapping sequences (right), separately for

the pre- and post-learning exposure phases and for recent and remotely learned sequences.

Figure supplement 1—source data 1. mPFC similarity for overlapping and non-overlapping sequences.

Figure supplement 2. mPFC similarity related to recognition priming.

Figure supplement 2—source data 1. mPFC similarity related to recognition priming.

Figure supplement 3. Neural integration in LOC.

Figure supplement 3—source data 1. LOC fit to neural integration model.

Figure supplement 3—source data 2. LOC neural integration related to recognition priming.

Figure supplement 3—source data 3. LOC similarity for overlapping and non-overlapping sequences.

Figure supplement 4. Neural integration of A and B items.

Figure supplement 4—source data 1. Neural integration of A and B in anterior hippocampus.

Figure supplement 4—source data 2. Neural similarity for overlapping and non-overlapping A and B sequences in anterior hippocampus.

Figure supplement 4—source data 3. Neural integration of A and B in LOC.

Figure supplement 4—source data 4. Neural similarity for overlapping and non-overlapping A and B sequences in LOC.

after learning enables us to extract ‘snapshots’ of the pattern of activity evoked by each image before
and after participants learned their temporal associations. Specifically, we were interested in quanti-
fying changes in the similarity in patterns of activity evoked by C objects as a function of whether they
were learned in overlapping or distinct sequences (e.g. followed by the same or different AB images)
and when they were learned (either in the recent or remote learning sessions). We also examined their
relationship with the recognition priming effects observed in those participants. The pseudo-random
trial order allowed us to statistically separate responses to individual images (Schapiro et al., 2012),
and C, and C, objects were presented in separate exposure scans to ensure that their similarity was
not driven by temporal proximity (see Methods for more details).

Learning-related and time-dependent changes in similarity

We quantified changes in similarity between all C objects by extracting patterns of activation for each
C object and compiling the correlation between all patterns into a matrix, separately for sequences
learned recently or remotely and separately for the pre- and post-exposure phases. We correlated
these four matrices with a model matrix postulating greater similarity between C objects that followed
the same AB sequence relative to those that followed different AB objects (‘neural integration model’;
Figure 3A). We then compared the pre-learning fit from the post-learning fit for recently and remotely
learned objects, where a significant increase in fit would indicate that C objects following the same AB
sequence became more similar to each other relative to C objects from other sequences. In contrast,
a decrease in fit would indicate that C objects became more differentiated. As a reminder, the pre-
learning exposure phase took place immediately before remote learning on Day 1, and the post-
learning exposure phase took place after recent learning on Day 2. This design allows us to dissociate
changes in similarity that emerge from sequence learning alone (recent learning), versus from learning
followed by a period of consolidation (remote learning).

In this planned analysis, we predicted greater similarity between C objects in mPFC but only for
remotely learned sequences. To this end, we applied this analysis to multi-voxel patterns in a func-
tionally defined mPFC region from the learning scans (see Methods). This region and others exhibited
greater BOLD signal for predictable objects (e.g. B and C objects) relative to unpredictable objects
(i.e. A and baseline objects), when considering all learning scans in both sessions (Figure 1—figure
supplement 2A). We chose this contrast to functionally define regions of interest (ROIs) because
we reasoned that cortical regions that were sensitive to the temporal regularities generated by the
sequences may be further involved in their offline consolidation and long-term storage (Danker and
Anderson, 2010; Davachi and Danker, 2013; McClelland et al., 1995). Surprisingly, in mPFC, the
change in fit between the correlation matrix reflecting neural similarity and the model was significantly
negative for the remotely learned objects (ty; = —3.06, p = 0.006; Bonferroni-corrected p = 0.024;
Figure 3B). This decrease remained when accounting for variation in BOLD signal (see Methods for
more details). A negative change score reflects a decrease in fit between the multi-voxel patterns
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and the integration model in the post-learning relative to pre-learning snapshots, which means that
over a combined period of learning and consolidation, voxels in mPFC differentiated objects that
appeared in overlapping sequences, contrary to our prediction. We confirmed this by computing
the average similarity separately for C objects in overlapping and non-overlapping sequences, and
separately for pre- and post-learning snapshots. We found a reliable decrease in similarity that was
selective to objects from overlapping sequences, and no reliable change in similarity among objects
in non-overlapping sequences (Figure 3—figure supplement 1). There was no reliable change in fit
to the neural integration model for recently learned objects (t,3; = —1.37, p = 0.18), however there
was no reliable difference in the extent of the change in fit between recent and remote learning (ty3
=-1.42,p=0.17).

Relationship between mPFC similarity and priming

Next, we asked whether changes in mPFC pattern similarity tracked the recognition priming observed
for objects whose sequences were learned 24 hr prior. To do this, we quantified the priming effect for
each participant as the median of the difference in RTs between responses to primed and unprimed
C objects, where a greater difference score indicates a stronger priming effect. We then correlated
this score with participants’ change in fit to the neural integration model from the pre- to post-
learning exposure phases. We computed this correlation separately for the objects learned recently
and remotely (Figure 3C). We found that participants with increased similarity among C pairs from
overlapping sequences exhibited a stronger priming effect, but only for pairs learned remotely (ry;
= 0.57, p = 0.004, Bonferroni-corrected p = 0.016). This relationship was not detectable for pairs
learned recently (r) = —0.30, p = 0.15) and the difference in the two correlations was significant
(z=3.07, p < 0.001). Furthermore, the correlation between change in mPFC similarity and priming
was driven specifically by a change in similarity in the overlapping sequences learned in the remote
session (Figure 3—figure supplement 2). This suggests that across participants, the extent of neural
integration in mPFC reflects the extent of behavioral integration across overlapping sequences, but
this association only emerges after a period involving consolidation.

Control analyses

Here, we report steps taken to ensure that the observed changes in pattern similarity were not influ-
enced by variability in BOLD signal across different patterns. First, our pattern similarity approach
relied on point-biserial correlation, a special case of Pearson correlation that is invariant to average
levels of BOLD signal across patterns. Thus, z-scoring across all voxels within a pattern would give
rise to the exact correlation matrices as reported in the un-transformed main findings. Second, we
z-scored BOLD signal of each voxel across all patterns, which aims to mitigate the influence of inor-
dinately noisy voxels by down-weighting their extreme values across all trials (Kuhl and Chun, 2014,
Richter et al., 2016). This did not meaningfully change the reported results. This suggests that our
findings are not influenced by variation in average BOLD signal.

We also developed an analysis to account for cases where C; and C, objects exhibited differences
in average BOLD signal, reasoning that equivalent levels of BOLD signal (both high or both low) may
give rise to higher similarity between two objects. To do this, we calculated the absolute value of the
difference in average BOLD signal between each C; and C, object. We then re-analyzed the change
in fit between mPFC similarity and the neural integration model, and the extent that this change
correlated with recognition priming, while accounting for this new measure using partial correlations
(see Methods for details of this analysis). When accounting for the difference in BOLD signal, we found
that the correlation between neural similarity and the integration model was significantly negative for
the remotely learned objects (t,3; = —3.08, p = 0.005) and not for recently learned objects (t,3 = —1.37,
p = 0.18), with no reliable difference between the two (tp = —1.51, p = 0.17). Furthermore, partici-
pants with increased similarity among C pairs exhibited a stronger priming effect, but only for pairs
learned remotely () = 0.58, p = 0.003) and not recently (r) = —0.31, p = 0.15). In summary, we repli-
cated the observed findings: (1) mPFC similarity decreased after learning, particularly after remote
learning, and (2) participants with a greater change in similarity in mPFC after learning exhibited
stronger recognition priming, only for the remotely learned objects. This suggests that the reported
findings are not driven by average BOLD signal.
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Changes in similarity in other regions

In addition to our planned analysis of mPFC, we conducted exploratory analyses of learning- and
consolidation-related changes in similarity in other regions. Prior work has observed neural integra-
tion in category-selective cortical regions immediately after learning (Richter et al., 2016; Tompary
and Davachi, 2017; Wing et al., 2020). Using the same neural integration model as with mPFC, we
analyzed patterns of activity in LOC, a region sensitive to object stimuli. We found that C objects
belonging to overlapping sequences grew more similar to each other after recent learning (ts = 3.10,
p = 0.005, Bonferroni-corrected p = 0.02) but not for the remotely learned objects (tz; = 0.38, p =
0.71), with no reliable difference across the two (ty3 = 1.98, p = 0.06, Figure 3—figure supplement
3A). Interestingly, the average similarity between objects from all sequences increased in LOC, but
the improved model fit for recently learned sequences was driven by a larger increase in similarity for
objects from overlapping sequences relative to non-overlapping ones (Figure 3—figure supplement
30). Unlike in mPFC, the extent of this change did not relate to behavioral priming across participants
(both r's < 0.3, both p's > 0.14; Figure 3—figure supplement 3B). Neither anterior nor posterior
hippocampal ROIs exhibited changes in their fit to the neural integration model (all t's < 0.94, all p's
> 0.35).

Taken together, we find that although on average, objects that appeared separately in time, but
shared overlapping antecedents, are integrated in LOC immediately after learning but are differ-
entiated in mPFC after 24 hr. However, despite this differentiation at the group-level, participants
with stronger neural integration in mPFC exhibited facilitated behavioral integration as reflected by
stronger recognition priming.

AB integration and similarity

While the primary focus of this experiment was investigating behavioral and neural integration across
sequences with overlapping regularities, we also included tests of memory for AB pairs, to confirm
that participants were able to learn those components of each sequence. We observed consistently
high explicit memory for the pairs across both experiments, and implicit integration after a delay in
Experiment 1 only (Figure 2—figure supplement 1). We also designed Experiment 2 to replicate find-
ings of integration within sequences by assessing the similarity of A and B objects from overlapping
versus different sequences (Figure 3—figure supplement 4A). For this analysis, we had one planned
prediction, which was that AB pairs from the same sequences in the recent session would be more
neurally integrated in the anterior hippocampus, as this would be a conceptual replication of prior
work showing neural integration of temporally co-occurring shapes immediately after learning (Scha-
piro et al., 2012). Consistent with this prediction, we found greater similarity for AB pairs from the
same sequences in recent learning in the anterior aspect of the hippocampus, but not the posterior
aspect (Figure 3—figure supplement 4B, C). In an exploratory analysis, we also observed a similar
pattern of effects in in lateral occipital cortex; however, in this region, all AB pairs become more similar
to each other after learning, but this change was greatest for the overlapping AB pairs in the recent
condition (Figure 3—figure supplement 4D, E).

Experiment 2: resting-state connectivity

Having established a behavioral measure representing time-dependent integration across events and
linking that behavior to a neural measure of integration, we next were interested in understanding
whether these emerging signals were supported by active consolidation processes. As mentioned in
the introduction, our planned analyses focused on changes in resting-state connectivity between the
posterior hippocampus and category-selective LOC. Rest connectivity is operationalized here as the
Pearson correlation between the time courses of two ROlIs (Figure 4A).

Learning-related changes in rest connectivity

To first examine broad changes resulting from sequence learning, we collapsed across both recent
and remote learning and found a reliable increase in rest connectivity between posterior hippocampus
and LOC (ty, = 2.26, p = 0.03). This increase was driven primarily by an increase in connectivity after
remote learning (occurring on Day 1) (t,, = 2.70, p = 0.01, Bonerroni-corrected p = 0.065) rather than
after recent learning (occurring on Day 2) (t = 1.11, p = 0.28), although the extent of these increases
were not reliably different from each other (ty,) = 1.23, p = 0.23). Notably, Day 1 of the experiment
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Figure 4. Rest connectivity between LOC and posterior hippocampus. (A) Analytic approach for rest scans. Rest scans were preprocessed, stripped of
nuisance signals, and band-pass filtered. The mean residual signal was extracted from the posterior hippocampus and LOC for each volume of each
scan. Rest connectivity was measured by correlating their mean time courses. (B) Average rest connectivity between LOC and posterior hippocampus.
Gray dots indicate participants. Black, blue, and green dots indicate group averages. Error bars reflect standard error of the mean (SEM). * indicates

p < 0.05. (C) Correlation between the change in LOC—posterior hippocampal rest connectivity and average recognition priming across participants,
separately for recent and remote learning. Dots indicate participants. Lines indicate best fit. Plots can be reproduced with ‘Figure 4—source data
1.csv' and 'Figure 4—source data 2.csv'.

The online version of this article includes the following source data and figure supplement(s) for figure 4:
Source data 1. Rest connectivity between LOC and posterior hippocampus.
Source data 2. Rest connectivity between LOC and posterior hippocampus related to recognition priming.

Figure supplement 1. Rest connectivity between LOC and posterior hippocampus related to recognition priming, separately for pre- and post-learning
rest scans.

Figure supplement 1—source data 1. Rest connectivity between LOC and posterior hippocampus related to recognition priming, separately for pre-
and post-learning rest scans.

Figure supplement 2. Rest connectivity between LOC and mPFC.

Figure 4 continued on next page
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Figure 4 continued
Figure supplement 2—source data 1. Rest connectivity between LOC and mPFC.

Figure supplement 2—source data 2. Rest connectivity between LOC and mPFC, related to recognition priming.

(comprising pre-learning rest, remote learning, and post-remote learning rest) is most analogous to
prior designs investigating learning-related changes in connectivity, in that all scans take place on the
same day, in the same scan session, with no learning or experimental sessions. The observation that
hippocampal-LOC connectivity increases reliably after remote learning is a conceptual replication
of those findings (Murty et al., 2017, Tambini et al., 2010). This finding was selective to aspects of
the posterior hippocampus, as there was no analogous change in rest connectivity between anterior
hippocampus and LOC (ty, = 0.23, p = 0.82).

Since mPFC exhibited changes in neural patterns that reflect learning and consolidation of the
sequences, we also explored whether rest connectivity with this region changed after learning.
Surprisingly, there was an increase in rest connectivity between LOC and mPFC (ty, = 2.25, p = 0.03).
This increase was driven primarily by an increase after recent learning, on Day 2, although this did
not survive comparison for multiple corrections (t,, = 2.31, p = 0.03, Bonferroni-corrected p = 0.15).
There was no corresponding change after remote learning (t,, = 1.18, p = 0.25), with no reliable
difference across sessions () = —1.00, p = 0.33; Figure 4—figure supplement 2A). There was no reli-
able change in rest connectivity between mPFC and either anterior or posterior hippocampus (both
t's < 1.23, both p's > 0.23), suggesting a selective role of sensory cortex in post-learning processing of
the sequences consistent with prior work (Murty et al., 2017, Tambini et al., 2010).

Relationship between rest connectivity and priming
As past work has observed that learning-related changes in rest connectivity are related to later
memory for the preceding learned items (Murty et al., 2017, Tambini et al., 2010; Tompary et al.,
2015), we next investigated whether changes in rest connectivity between posterior hippocampus
and LOC related to our measures of integration as evidenced by recognition priming (Figure 4C).
To do this, we conducted two across-participant correlations between the change in rest connec-
tivity (post- minus pre-learning) and median recognition priming of sequences: one from the remote
learning session, and another from the recent learning session. We found that participants with a
greater change in posterior hippocampal-LOC connectivity exhibited larger priming effects only for
sequences from the remote learning session (ry;, = 0.56, p = 0.005, Bonferroni-corrected p = 0.025)
and not the recent learning session (r; = 0.09, p = 0.69). This relationship between connectivity and
behavior was not significantly different across the two sessions (z = 1.68, p = 0.09), suggesting caution
in interpreting the relationship between connectivity and priming as solely emerging after a delay.
We conducted several control analyses to investigate the specificity of the relationship between
changes in rest connectivity and recognition priming from the remote session. First, rest connectivity
from the recent session did not relate to remote priming, and rest connectivity from the remote session
did not relate to recent priming (both r's < 0.10, both p’s > 0.65), suggesting that learning-related
changes in rest were related solely to the memoranda learned in the intervening session. Second, LOC
rest connectivity with neither mPFC (Figure 4—figure supplement 2B) nor anterior hippocampus
related to priming from either session (all r's < 0.23, all p's > 0.28). Third, rest connectivity between
LOC and posterior hippocampus did not relate to any explicit memory measures for C, and C, pairs
at either time point (both r's < —0.32, both p’s > 0.13). Together, these observations demonstrate that
the long-term implicit integration across overlapping sequences is selectively related to immediate
post-learning rest connectivity between the posterior hippocampus and LOC.

Accounting for same- versus across-session change scores

A critical difference between the recent and remote conditions is that the pre-learning rest scan took
place on Day 1 before the remote learning session, meaning that the change score from pre- to post-
learning was computed across 24 hr for the recent condition but within the same scan session for the
remote condition. We were concerned that this difference may insert noise into the change score for
the recent condition. We reasoned that if this were the case, changes in coupling from pre-learning
to post-recent learning rest may be more variable than changes in coupling from pre-learning to
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post-remote learning rest. We conducted F-tests to compare the variance of the change in these two
hippocampal-LOC correlations and found no reliable difference (ratio of difference: Fj; 2, = 0.811, p
= 0.63), suggesting that the change score for the recent condition was not substantially noisier than
that of the remote condition.

As an additional precaution, we side-stepped this potential confound of a difference in the change
scores by computing the correlation between hippocampal-LOC coupling and priming separately for
the pre- and post-learning scans (Figure 4—figure supplement 1). We found that neither pre- nor
post-learning coupling related to priming of recently learned sequences (pre-learning: r,,, = —0.19,
p = 0.38, post-learning: rpyy = —0.07, p = 0.75). Notably, the finding that the relationship between
change in connectivity and priming of remotely learned sequences was driven by trends for a negative
relationship pre-learning (r,y = —0.40, p = 0.06) and a positive relationship post-learning () = 0.39,
p = 0.07).

These findings suggest two things. First, the lack of a relationship between connectivity and priming
of recently learned sequences is not due to a noisier change score that was computed across sessions,
as there was no relationship with priming when isolating the post-learning rest scan. In contrast, the
relationship between coupling and priming of remotely learned sequences was observed in the post-
learning scan alone, albeit as a statistical trend. Second, these findings highlight the importance of
employing a change score, as we observed a trend for a negative relationship between coupling and
priming before learning occurred. This may be spurious, or it could reflect individual differences in
intrinsic brain function (Fox et al., 2007), but regardless needs to be accounted for to identify signals
that are selective to learning and consolidation processes.

Experiment 2: relationship between neural integration and rest
connectivity

So far, we have reported that priming of overlapping sequences is related both to changes in their
neural similarity in mPFC and increases in rest connectivity between posterior hippocampus and LOC.
In the next section, we aimed to examine the relationship between these two neural measures and
test whether they contributed unique variance in the extent of recognition priming observed across
participants.
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Figure 5. Relationship between mPFC similarity, rest connectivity, and priming. (A) Correlation between medial prefrontal cortex (mPFC) similarity

and rest connectivity between posterior hippocampus and LOC across participants, separately for pre- and post-learning connectivity and pre- and
post-learning similarity in mPFC (left) and for the change in connectivity and similarity (post- minus pre-learning; right). Dots represent participants and
lines represent model fit. * indicates p < 0.05. (B) Visualization of multiple linear regression predicting recognition priming for the remotely learned
sequences. Each dot is a participant. Color indicates the magnitude of the change in rest connectivity between posterior hippocampus and LOC. Lines
represent fits of the model at different magnitudes of rest connectivity. Plots can be reproduced with Figure 5—source data 1-3.

The online version of this article includes the following source data for figure 5:

Source data 1. Relationship between mPFC similarity and rest connectivity, separately for pre- and post-learning rest scans.

Source data 2. Relationship between change in mPFC similarity and change in rest connectivity.

Source data 3. Relationship between mPFC similarity, rest similarity, and recognition priming.
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Relationship between similarity and rest

The relationship between mPFC similarity and hippocampal-LOC rest connectivity was computed by
correlating the two measures across participants separately for the recent and remote learning sessions
(Figure 5A, right). We found that participants with a greater increase in mPFC similarity of overlapping
sequences also exhibited a greater increase in rest connectivity immediately post-learning, but only
for objects from the remote session () = 0.42, p = 0.048) and not the recent session (ry;, = —0.18,
p = 0.40). Furthermore, this relationship was reliably stronger for the remote session over the recent
session (z = 2.04, p = 0.04). Critically, when examining the relationship between rest connectivity with
mPFC similarity separately using pre- and post-learning measures of each variable, no correlations
reach statistical significance (all r's < 0.22, all p's > 0.31; Figure 5A, left), which further underscores
the importance of focusing on learning-related changes in these measures.

Neural measures related to priming

Since the neural measures of mPFC similarity and LOC-hippocampal rest connectivity were correlated
for the remotely learned sequences, we next assessed whether the two measures explained unique
or shared variance in their relationship with recognition priming. Focusing on data from the remote
learning session, we computed a multiple regression with recognition priming (i.e. the median differ-
ences in primed versus unprimed RTs) as the dependent variable, and two predictors: the change in
rest connectivity and the average change in mPFC similarity. We then computed partial R? values for
each predictor. This revealed unique contributions of both the change in mPFC similarity (t; . = 2.37,
p = 0.03, semi-partial R* = 0.39) and the change in posterior hippocampal-LOC rest connectivity (t;,
20 = 2.13, p = 0.045, semi-partial R? = 0.43) in explaining recognition priming across participants.
Figure 5B visualizes the results of this model, showing participants’ relationship between their recog-
nition priming of the remotely learned objects and their change in mPFC similarity. This relationship
is overlaid with lines of best fit that represent the relationship between mPFC similarity and priming
given three magnitudes of hippocampal-LOC connectivity. This suggests that both measures are
positively and uniquely associated with participants’ time-dependent integration across overlapping
sequences.

Discussion

Across two experiments, we investigated how cortical representations and post-learning coupling
influenced the behavioral integration of memories with overlapping predictive structure. We manipu-
lated overlap in sequences of triplets such that objects shared antecedents (i.e. both were predicted
by the appearance of the same pair of objects) but never occurred together in time. First, we found
that participants’ RTs reflected increased association of objects with shared temporal structure, but
only 24 hr after learning the sequences. This delay-dependent behavioral measure of integration was
replicated in a cohort that underwent fMRI. In this cohort, we found that cortical neural similarity was
shaped by sequence learning in a delay-dependent manner: patterns of activity in LOC reflected the
immediate association of objects from overlapping sequences, while mPFC differentiated objects from
overlapping sequences learned 24 hr prior. At the same time, learning of the sequences increased
post-learning connectivity between the posterior hippocampus and LOC. Critically, after a 24-hr delay,
changes in mPFC similarity and changes in hippocampal-LOC rest connectivity were correlated across
participants, and both measures explained unique variance in the extent of recognition priming across
participants. We interpret these findings as evidence that both coordinated hippocampal-cortical
coupling and cortical learning are markers of consolidation that contribute to the behavioral integra-
tion of overlapping memories over time. Below, we discuss each of these findings through the lens of
systems consolidation theories and in the context of prior empirical work.

Integration of overlapping regularities

As a reminder, we observed implicit integration across overlapping sequences in a recognition priming
protocol, only after a 24-hr period, suggesting that systems-level consolidation processes can enhance
behavioral integration across memories with overlapping content. This finding adds to the literature
showing consolidation-dependent memory integration in different tests of integration: in transitive
inference (Ellenbogen et al., 2007; Lau et al., 2010; Werchan and Gémez, 2013), the extraction of
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statistical regularities (Wagner et al., 2004; Durrant et al., 2011; Durrant et al., 2011; Sweegers
et al., 2014; Batterink and Paller, 2017) and category learning (Djonlagic et al., 2009; Graveline
and Wamsley, 2017). The observed integration seems to emerge over time due to a slowing of the
control items, rather than a facilitation of the primed items. It is important to interpret this in light of
the recognition decisions that participants made as a cover task. Slowing of recognition responses
over delay periods is a classic time-dependent effect (Reber et al., 1997), and the fact that the RTs in
the primed condition do not show this slowing suggests that implicit integration served as a protec-
tion against the slowing that would otherwise occur. However, as we did not find statistically reliable
interaction between priming condition and day in either experiment, the notion that such integration
develops solely after a 24-hr delay should be evaluated with caution.

While we only observed behavioral priming 24 hr after learning, we observed weak but reliable
explicit integration for the same items immediately after learning, which remained unchanged over
the same 24-hr period, consistent with many observations showing immediate explicit integration
across overlapping memories (Acuna et al., 2002a; Acuna et al., 2002b; Ellenbogen et al., 2007,
Greene et al., 2006; Heckers et al., 2004; Lau et al., 2010; Preston et al., 2004; Werchan and
Goémez, 2013; Zeithamova et al., 2012). Even though both results are consistent with prior work,
what could explain the discrepancy in the timing of successful implicit and explicit integration—both
of which replicated in a second cohort of participants? A handful of behavioral studies find that partic-
ipants perform better at explicit integration tests after sleep, but these studies differ in many factors
that could explain the discrepancy with our findings: (1) instructions to explicitly encode premise pairs
(Ellenbogen et al., 2007), (2) foreknowledge of the underlying structure of the stimulus associations
prior to learning (Sweegers and Talamini, 2014), and (3) the use of non-temporal versus temporal
structure of the regularities (Lerner and Gluck, 2019).

The paradigms that specifically investigate the integration of sequences merit special attention.
There is some evidence of transitive inference across overlapping sequences (e.g. inferring AC from
viewing AB and BC in a continuous stream of colored dots) (Luo and Zhao, 2018). Explicit recog-
nition of these associations was on par with performance in our explicit integration task. However,
there was no delayed test or implicit integration measure, precluding any interpretations about the
role of consolidation in this form of integration. The sequences in our protocol also resemble para-
digmatic relations (McNeill, 1963), which are second-order associations that do not co-occur, but
instead are substitutable with each other because of their shared context (e.g. wearing ‘flip-flops’ and
wearing ‘boots’). Interestingly, Yim et al., 2019 observe implicit learning of paradigmatic relations
only when participants are instructed to attend to the stimuli (i.e. actively categorizing images rather
than listening to an auditory stream while coloring) and have robustly learned the relevant premise
pairs. This fits with our findings in several ways: first, our encoding task required constant comparisons
between the present and previous objects, which may have heightened awareness of the temporal
regularities, like in their active encoding protocol. Second, Yim et al. find strong evidence of explicit
memory for first-order associations across all experiments, which mirrors our observations of strong
explicit knowledge of AB pairs. However, one notable difference is that Yim et al. did not administer
an implicit test for paradigmatic associations after a delay, which is the only condition where we
observe integration. Why integration emerges immediately after learning in their experiment, but only
after a period of consolidation in our experiment, remains an open question.

Finally, the discrepancy between our implicit and explicit tasks could be explained more broadly by
differences in memory strength for the within- and across-event associations. Results from the explicit
memory test indicate much better integration of objects in the same sequence (A and B) relative to
integration across sequences (C; and C,). Importantly, A and B were viewed twice as many times as
each C, as they preceded each appearance of C, and C,. It may be that these overlearned associations
are more accessible and explicit integration tests are sensitive to this information. At the same time,
consolidation may promote representational changes that (1) benefit associations that are not already
strengthened through sufficient learning (Schapiro et al., 2018), or (2) benefit implicit memories,
which are more easily captured with measures like priming, more than explicit, declarative memories
(Henke, 2010). These possibilities also fit well with TTT, which posits that differences in how a memory
is expressed may be explained both by the relative strength of different neural traces at different time
points, and by which of multiple neural traces is most suitable for the demands of the current task. It
may be that neural representations supporting implicit integration may require time and consolidation
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to develop, while neural representations that can leverage explicit retrieval strategies may be avail-
able immediately after learning. The use of multiple behavioral tasks that capture both explicit and
implicit expressions of memories is a fruitful approach that could be used to better characterize how
different memory traces may be differentially expressed over time.

While we consider our priming task to be an implicit test of integration across sequences, the task
does rely on explicit memory demands, as responses in the priming task reflect explicit recognition of
each object in isolation. The use of a recognition task raises the question of whether our results would
generalize to a task that does not rely on memory retrieval. Recently, there have been observations
of implicit integration using a similar priming task in which participants made preference ratings for
the learned stimuli (Abolghasem et al., 2023). Given this, we speculate that response priming can
reveal newly learned associations between stimuli regardless of the cover task. On the other hand,
responses in the learning task required an explicit comparison of two objects in sequence, as partic-
ipants decided if the object on screen was bigger or smaller than the preceding one. This emphasis
on the temporal relationships between objects may have quickened participants’ ability to learn the
sequences and in turn facilitated integration across overlapping sequences. Without this attention to
temporal relationships, we speculate that learning of the sequences still may have occurred, but more
exposure to the sequences would be required to reach the same magnitude of learning.

What learning mechanism could enable the integration of overlapping temporal regularities? One
candidate is forward prediction: when encountering repeated sequences of events, neural repre-
sentations of the predicted items are formed and strengthened over subsequent repetitions of the
sequence (Kok et al., 2012; Schapiro et al., 2012; Turk-Browne et al., 2012; Schapiro et al., 2013,
Hindy et al., 2016; Schapiro et al., 2016; Kok and Turk-Browne, 2018, for a review of hippocampal
involvement, see Davachi and DuBrow, 2015). In our case, due to the intermixed exposure to the
same AB and two different C objects, forward prediction of both C objects while viewing B may
have helped to cement their association. More specifically, the early comparisons between the two
outcomes of an overlapping sequence may have produced a prediction error that directed attention
to the differences across the two sequences, which would give rise to their successful retention and
integration (Wahlheim and Zacks, 2019). Notably, the frequent interleaved repetition of the two
overlapping sequences may have additionally strengthened their association; without this interleaved
training, overlapping sequences may have been behaviorally differentiated in order to reduce interfer-
ence across them (Chanales et al., 2020; Drascher and Kuhl, 2022). Forward prediction may not be
the only mechanism that can give rise to the integration, as there is neural evidence that second-order
associations built with predictable first-order associations are reflected in patterns of brain activity,
suggesting that they can be learned in the absence of predictive mechanisms (Schapiro et al., 2013;
Schapiro et al., 2016). Furthermore, the fact that we only observed behavioral integration after a
delay suggests that forward prediction may not be sufficient to give rise to behavioral integration
across events.

Cortical and hippocampal similarity

We found that after 24 hr, patterns of activation in mPFC reflected differentiation of objects from
overlapping sequences. This was counter to our prediction that with consolidation, neural patterns in
mPFC would reflect similarities across sequences with shared temporal regularities, as most evidence
of neural differentiation of highly similar or overlapping stimuli is observed in the hippocampus rather
than in cortical regions (Hulbert and Norman, 2015; Favila et al., 2016; Chanales et al., 2017,
Dimsdale-Zucker et al., 2018). There are a few noteworthy findings of mPFC differentiation that
may help to make sense of this finding. First, Ezzyat et al., 2018 observed that neural patterns
evoked by associative memories in mPFC were more distinct than those evoked by item memories,
but this difference only held for events that were re-studied after a night of sleep and not for events
re-studied in the same experimental session. Second, individual autobiographical memories can be
successfully decoded in mPFC, and classification accuracy for individual memories is greater for more
remote memories relative to recent ones (Bonnici et al., 2012). Third, differentiation in mPFC has
been shown to emerge over repeated testing, in addition to over a delay period, and also relates to
long-term memory (Karlsson Wirebring et al., 2015), in line with the idea that repeated testing can
accelerate the stabilization of memories by minimizing competition with related memories (Antony
et al., 2017, Hulbert and Norman, 2015). Fourth, different regions of mPFC exhibit integration and
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differentiation signatures within the same experimental setting (Schlichting et al., 2015), suggesting
that there may be anatomical distinctions across this region that were not considered in the present
experiment. Nevertheless, we suggest that mPFC plays a role in the differentiation of discrete memo-
ries to support their long-term storage.

Perhaps the most surprising results we found were that despite this differentiation in mPFC when
considering group-level changes, mPFC neural patterns reflecting integration positively scaled with
priming across participants. This suggests that the level of neural representational overlap in the same
subregions of mMPFC may support both differentiation and integration of overlapping memories—
extending beyond findings that different subregions within mPFC separately support differentiation
and integration (Schlichting et al., 2015). Reports of correlations between neural and behavioral
integration despite neural differentiation at the group level have been reported before (Molitor et al.,
2021). This suggests that the restructuring of memories in mPFC conforms to ongoing goal states in
addition to the properties of the experience itself (e.g. whether there are similarities or differences
across events). Consistent with this, in past work, we found that neural pattern overlap increased
in mPFC for objects paired with the same scene after a week, but these effects were observed in
a source memory test focusing on the scenes, which either overlapped or were distinct from other
memories, and less so in a standard recognition test of the experiment-unique objects (Tompary and
Davachi, 2017). Furthermore, in a similar experiment where participants were required to make more
fine-grained source memory judgements, mPFC patterns only reflected increasing neural integration
over time when the encoded object-scene pairs were congruent with prior knowledge (Audrain and
McAndrews, 2022). These mixed results suggest that task demands matter: they likely prioritize
processes that are most needed for successful performance (Brunec et al., 2020), which could give
rise to differentiated or integrated neural patterns evoked by the same stimuli depending on the task.
Taken together, however, the extant data combined with past results supports the conclusion that
dynamic neural representational change occurs in the mPFC that structures our experiences, but that
it may be best to think of these representations as lying on a continuum from separated to integrated,
and thus able to support behavior across a variety of tasks.

In this study, the pattern of activity in the anterior hippocampus reflected learned associations
between objects that always appeared back-to-back (A and B). This is a direct replication of prior work
(Schapiro et al., 2012) and also highlights the importance of hippocampal representations in memory
for temporal order (DuBrow and Davachi, 2013; Hsieh et al., 2014; Kalm et al., 2013, Paz et al.,
2010). At the same time, there are several reports of hippocampal integration across events that
are separated in time, both immediately after learning (Ritchey et al., 2015; Schapiro et al., 2016,
p. 201; Schlichting et al., 2015) and after a delay (Dandolo and Schwabe, 2018, Ritchey et al.,
2015; Tompary and Davachi, 2017), and even lesion work demonstrating the necessity of the hippo-
campus for such integration behaviors (Pajkert et al., 2017; Schapiro et al., 2014). Why then did we
not observe changes in neural similarity in the hippocampus that reflected overlap across sequences
separated in time? One possibility is that any signal reflecting overlap in the hippocampus may have
been too subtle to identify in the exposure phase, as participants were not engaging with the objects
in a manner that would promote integration processes. In contrast, signals reflecting AB integration
may have been strong enough to appear in the absence of an active integration task because AB
sequences were viewed twice as many times and were strongly explicitly remembered. Furthermore,
as with any null effect, it could be due to low statistical power or low signal-to-noise ratio, a common
issue for MRl investigations of medial temporal lobe structures.

Post-encoding rest connectivity

A critical component of systems-level consolidation theories is that long-term memories become
stabilized through communication between the hippocampus and cortex, resulting in cortical memory
traces. Here, we found that learning object sequences resulted in increased rest connectivity between
the posterior hippocampus and LOC, a region that codes for object information. This increase in
connectivity was related to the extent of recognition priming across participants, suggesting that
coordinated post-learning processing in these regions can facilitate the behavioral integration of over-
lapping memories. This finding extends a growing body of work demonstrating that hippocampal
connectivity with stimulus-selective cortex is related to long-term memory retention (Collins and Dick-
erson, 2019; de Voogd et al., 2016; Keller and Just, 2016; Murty et al., 2017, Murty et al., 2019).
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However, our findings differ from these observations in one critical way: we found that post-learning
rest connectivity related to behavioral integration across overlapping memories, rather than retention
of discrete memories. To our knowledge, the only one analogous finding has been observed, in a
paradigm where post-learning rest connectivity between anterior hippocampus and the fusiform face
area was measured after learning premise pairs in an associative inference paradigm (Schlichting and
Preston, 2016). Together this suggests that post-learning rest connectivity may not only support
the retention of specific episodic memories, but also underpin integration across them. When might
consolidation processes support one over the other? One possibility could be that salient features
surrounding learning shape consolidation to prioritize goal-relevant information (i.e. Cowan et al.,
2021). However, in our study and the one conducted by Schlichting and Preston, the integration tests
were a surprise. Without cues about the test, it remains unclear which feature of memory may be
prioritized by consolidation mechanisms, or if both are. Future studies should relate learning-related
rest connectivity with distinct behavioral measures that capture both retention of individual events
and across-event integration.

We also identified a delay-dependent relationship between changes in rest connectivity and cortical
integration of objects from overlapping sequences. Specifically, participants with elevated posterior
hippocampal-LOC rest connectivity after the remote learning session also exhibited greater neural
integration in mPFC for the remotely studied objects. Both measures explained variance in recogni-
tion priming across participants, suggesting that they uniquely support delay-dependent behavioral
integration. The timing of these two measures may hint at the directionality of their association: the
rest scan occurred immediately after learning on Day 1, and the post-learning similarity values were
measured on Day 2. This order parallels predictions from systems-level consolidation theories that
cortical neural traces are trained by the hippocampus via coordinated processing (McClelland et al.,
1995). An intuitive prediction is that coordination between the hippocampus and a particular cortical
region would shape similarity in that same region. Indeed, in one study, pattern similarity in mPFC for
objects studied in the same temporal context was related to connectivity between the anterior hippo-
campus and mPFC (Cowan et al., 2020). Relatedly, past work has found that connectivity between
anterior hippocampus and mPFC was related to the similarity of overlapping memories in mPC
(Cowan et al., 2020) and anterior hippocampus (Tompary and Davachi, 2017). In other words, both
studies identified the same circuit despite differences in the site of representational change and in
their experimental designs. However, the current findings suggest that the connection between post-
learning connectivity and similarity is more complex, since we found that changes in similarity in mPFC
related to changes in posterior hippocampal connectivity with LOC and not anterior hippocampal
connectivity with mPFC. This is especially surprising when considering past work that more often
implicates anterior hippocampus in memory integration (Schapiro et al., 2012; Schlichting et al.,
2015; Ritchey et al., 2015). One possibility for this discrepancy is that the anterior hippocampus may
support online and/or explicit integration, while the role of posterior hippocampus is to strengthen
memory for discrete items in offline periods that can later be integrated via the anterior hippocampus.
However, this is difficult to reconcile with the above-mentioned demonstration that offline connec-
tivity between anterior hippocampus and mPFC relates to neural integration (Tompary and Davachi,
2017, Cowan et al., 2020). Further investigation of relationships between cortical similarity and post-
learning processing is needed to constrain theories of systems-level consolidation and understand the
precise circuit interactions unfolding over time that give rise to consolidated memories.

Future directions, caveats, and conclusion

There are two major topics that we have so far neglected to mention but are integral to the study of
the consolidation and integration of related events. First, new memories are not learned and consol-
idated in a vacuum. Prior knowledge has long been known to influence the formation of new event
memories (Alba and Hasher, 1983; Anderson, 1984; Bartlett, 1932; Bransford and Johnson, 1972).
More recently, much work has been devoted to understanding how prior knowledge influences neural
processes that support their encoding, long-term storage, and transformation over time (Liu et al.,
2017 Liu et al., 2018; Bonasia et al., 2018; Bellana et al., 2021; Audrain and McAndrews, 2022).
In our experiment, all object stimuli were real-world objects, thus the random assignments of object-
triplet across participants may have incidentally introduce uneven pre-experimental associations
among the sequences (e.g. belonging to the same category, or having similar functions, or sharing
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salient features). This raises interesting questions about how prior knowledge may influence the inte-
gration of new related memories in addition to their long-term stabilization, a promising avenue of
future work.

Second, TTT is agnostic to whether consolidation mechanisms require the passage of time, or
if there are circumstances in which integrated, cortically based memories can form quickly. There
are now many demonstrations that memories can be rapidly consolidated, as characterized by
longer retention durations and increased involvement of mPFC: through repeated retrieval (Antony
et al., 2017, Ferreira et al., 2019, Ye et al., 2020), through 'fast-mapping’ of novel words onto
new concepts (Coutanche and Thompson-Schill, 2015; Sharon et al., 2011); and for events that
are consistent with prior knowledge, as discussed above. Furthermore, discrete events can be inte-
grated into more general knowledge, like schemas, immediately after learning (Brown and Evans,
1969; Kumaran et al., 2009; Posner and Keele, 1968; Richter et al., 2019, Tompary et al., 2020;
Tompary and Thompson-Schill, 2021; Zeng et al., 2021). However, this does not directly conflict with
TTT, as new schemas are increasingly used after a delay even though they are immediately available
(Tompary et al., 2020; Zeng et al., 2021), consistent with TTT's prediction that the form of memory
that is expressed (detailed or schematic) is governed by the relative strength of the neural trace of
that memory in the hippocampus versus cortex. Future work should test whether the consolidation-
related neural measures presented in this study may similarly underpin the rapid integration of new
information.

Finally, we note several important caveats. First, to manipulate the passage of time/course of
consolidation within participants, we split encoding into two sessions and intermixed encoded memo-
randa into one test session. There are several advantages and disadvantages to this design over a
design in which with one encoding session and retrieval split into ‘immediate’ and ‘delayed’ sessions.
In our design, participants are only tested once, preventing rehearsal of stimuli to be tested after a
delay after exposure to the test format in the ‘immediate’ session. An intermixed test also minimizes
the chances that participants are switching retrieval strategies or response criteria for recent and
remotely learned memoranda. However, encoding in the second ‘recent’ session may be influenced
by the first ‘remote’ session. Indeed, knowledge of the task is reflected in the overall slower RTs but
a larger facilitation in RTs across learning in the remote session relative to the recent one (Figure 1—
figure supplement 1). As we discussed, it is well known that prior knowledge can shape the encoding
of new, similar events, often with a shift to circuits involving mPFC when encoding of events that
are consistent with prior knowledge (e.g. van Kesteren et al., 2010). This may explain why we find
increased rest connectivity of LOC and posterior hippocampus after the first, ‘remote’ session but
increased rest connectivity of LOC and mPFC after the second, ‘recent’ session; both observations
may be driven by processing of the remote memories, reflecting a shift from hippocampal to cortical
processing across the two sessions. Indeed, the post-learning rest scan from the ‘recent’ scan may
reflect processing of both recently and remotely learned stimuli, and this mixture of signals may have
prevented us from identifying a clear link between rest connectivity and memory. In summary, neither
a design with split encoding nor a design with split retrieval can perfectly isolate influences of consol-
idation. Ideally, in the future, consolidation effects will be observed in converging findings from both
types of designs.

A second caveat is that we did not include a pre-learning rest scan during the ‘recent’ session.
We chose not to include such a scan for several reasons. First, the Day 2 session was longer than
that of Day 1 because it included the recognition priming and explicit memory tasks, and the addi-
tion of a pre-learning scan would have made the length of the session longer and more tiring for
participants. Second, because we split learning into two sessions as discussed above, we anticipated
that the pre-learning scan would not have been a ‘clean’ measure of baseline processing, but rather
would include signal related to continued processing of the Day 1 ‘remote’ sequences, as multi-
variate reactivation of learned stimuli has been observed in rest scans collected 24 hr after learning
(Schlichting and Preston, 2014). For these reasons, we decided to use the pre-learning rest scan
from the Day 1 ‘remote’ session as a baseline for both learning sessions. However, there is a concern
that using a pre-learning scan from a different day might generated a noisier estimate of a change
score between that scan and the post-recent learning scan, as patterns of resting-state connectivity
are more correlated across two scans within the same experimental session relative to across two
sessions (Shehzad et al., 2009). This added noise may have prevented us from observing a change in
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hippocampal-LOC coupling after recent learning, which would be equivalent to what we observed for
remotely learned sequences and would reflect immediate offline processing of the recently learned
sequences. However, as stated before, we instead observed a reliable increase in coupling between
LOC and mPFC, which suggests that a change score computed across scan sessions is sensitive enough
to identify changes in coupling at the group level. Furthermore, the fact that there was no relationship
between a change in coupling and recognition priming of recent objects may be driven by the facts
that there was no reliable evidence of priming of recently learned sequences in the recognition task.

A third caveat is that the post-learning exposure phase always followed recognition priming, which
was the only task in which participants viewed C,; and C, objects back-to-back. This new sequential
order may have impacted their corresponding neural representations. When designing the study, we
reasoned that it was more important for the behavioral priming task to come before the exposure
scans, as all objects were shown only once in that task, whereas they were shown four to five times in
a random order in the post-learning exposure phase. Because of this difference in presentation times,
and because behavioral priming findings tend to be very sensitive, we reasoned that it was more
important to protect the priming task from the exposure scan instead of the reverse. Furthermore,
we expected that the single additional presentation of the C objects in the recognition priming task
would not substantially override their sequence learning, as C objects were each presented 16 times
in their sequence (ABC, and ABC, 16 times each). Critically, the order of C objects during recogni-
tion was the same for recent and remote conditions; since we observed a selective change in neural
representation for the remote condition and no corresponding change for the recent condition, this
suggests that recognition priming order alone could not substantially impact the representations.

A fourth caveat concerns the control condition in the priming task. The control condition comprised
responses to C objects that followed baseline items rather than C objects from different sequences.
We decided to use baseline items as we wished to maximize the number of comparisons in the primed
condition for power purposes while only presenting each object once—as mentioned above, repeti-
tion of objects in this task may have further facilitated RTs and potentially masked any priming effects.
However, this design choice leaves opens the possibility that all C objects became behaviorally inte-
grated regardless of their sequence overlap, due to some other dimension of the learning task. For
instance, all C objects are positioned ‘third’ in each sequence, and they have identical transition prob-
abilities. We find encouraging evidence that such integration by position is unlikely. First, the observed
priming effect for the remotely learned sequences is selectively correlated with post-learning neural
similarity between C objects from overlapping sequences, and not related to similarity between C
objects from different sequences (Figure 3—figure supplement 1). Furthermore, the explicit inte-
gration tests in both experiments used C objects from other sequences as foils, either appearing in
re-arranged pairs in Experiment 1 or as the foil option in Experiment 2. Above-chance performance
in both experiments suggests that participants successfully learned some sequence-specific associa-
tions, rather than merely learning positional information about the different objects. However, future
work with a sequence-specific control condition would strengthen our claim that priming between the
C objects specifically reflects the integration of objects from overlapping events.

Taken together, the present results demonstrate that over time, episodic memories that share
temporal regularities become behaviorally integrated. Furthermore, these findings provide evidence
for the notion that psychological transformations in memories are accompanied by shifts in cortical
similarity—both integration and differentiation—and driven by post-learning hippocampal-cortical
coupling. These observations reveal new insights into the development of conceptual or semantic
memory over time, suggesting that the consolidation of memories with overlapping temporal struc-
tures may constitute a key driver of memory integration.

Materials and methods

Experiment 1

Subjects

Ninety right-handed, native English speakers participated in this experiment. Demographic informa-
tion was lost for 25 participants; of the 65 with intact records, 42 were female, and the mean age was
23 (range: 18-33). Participants were recruited from New York University and the broader commu-
nity. The University Committee on Activities Involving Human Subjects approved all recruitment and

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 23 of 38


https://doi.org/10.7554/eLife.84359

e Llfe Research article

Neuroscience

consent protocols. Twelve participants were excluded: six did not return for the second experimental
session; one fell asleep; five ended early due to experimental error. A further 5 participants were
excluded due to poor performance on the recognition test (A < 3 SD relative to group average for
either recent or remote memory), leaving 73 participants included in all following analyses.

Stimuli
The stimuli used in this experiment consisted of 100 color images of objects, taken from online data-
bases and used in previous studies (DuBrow and Davachi, 2013; DuBrow and Davachi, 2014).

Experiment procedure

The experiment consisted of two sessions, separated by approximately 24 hr. In the first session, partic-
ipants incidentally encoded sequences of the objects while performing a cover task (remote learning).
In the second session, participants began by incidentally learning a new set of object sequences while
performing the same cover task as in the first session (recent learning). Then, participants completed
two tests consisting of both sets of stimuli from the two learning sessions: a recognition priming task
and an explicit integration task. Because memory for all object sequences was tested at the end of
the second scan session, memory for objects learned on the first day were considered remote, and
memory for objects learned on the second day were considered recent. Thus we refer to the first
session as the remote session and the second session as the recent session.

Sequence learning task

In both sessions, participants incidentally encoded a set of sequences. As a cover task, participants
viewed each object and decided if the object present on screen was bigger or smaller than the prior
object. All objects were presented as the same size, but participants were instructed to use estimates
of their real-life sizes.

The order of the objects was arranged such that the first two objects in a sequence (A and B) were
presented together 100% of the time. B was directly followed by one of two other objects (C; and
C,), each following B 50% of the time. Thus, participants were exposed to ABC, half of the time, and
ABC, the other half of the time. Six unique sequences of objects were presented in each of the two
learning sessions. Six baseline objects were randomly inserted between sequences, for use as control
comparisons for C objects (see Methods for priming task below). This resulted in a total of 30 objects
in each learning session: 6 A objects, 6 B objects, 6 C, objects, 6 C, objects, and 6 baseline objects.
See Table 1A for transition probabilities between all objects.

Each sequence of ABC, and ABC, was repeated 16 times, meaning that A and B were exposed
to participants 32 times and C; and C, were exposed to participants 16 times over the course of
learning. Baseline objects were presented 16 times to equate exposure frequency with C objects. In
other words, ABC; and ABC, sequences would be intermixed either with baseline objects or other
sequences. The presentation of all sequences and baseline objects were divided into four 11-min
learning blocks per session, and participants were given the option to take a 1-min break between
blocks. The order of the stimuli was pseudo-randomized such that all sequences (ABC; and ABC,)
appeared four times in each block, all baseline objects appeared twice in each block, and no sequence
with the same A and B objects was presented back-to-back.

The presentation timing was designed in anticipation of the planned fMRI experiment (see Experi-
ment 2). Each object was presented for 2 s, and participants were instructed to respond as quickly as
possible before the object was removed from the screen, without sacrificing accuracy. Between each
trial, there was a variable inter-trial interval (ITl) ranging from 0 to 4 s. The ITI was constructed to opti-
mize item-level pattern similarity analyses between C,; and C, within a sequence (not reported in this
manuscript), while also allowing for sufficient jittering of trials to perform condition-level univariate
analyses. The ITls between sequences and before and after baseline objects were randomly jittered.

Finally, the sizes of objects in each sequence were pre-determined such that the motor response
to C objects were matched within each sequence. To do this, we divided the object into 'big’ and
‘small’ bins based on estimations of their size relative to a shoe box. We then arranged the objects
into sequences such that both C; and C, were either bigger or smaller than B. Furthermore, in half of
the sequences in each learning session, C; and C, were bigger than B, and in the other half, C; and C,
were smaller than B. However, because the sequences and baseline object were randomly intermixed,
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(A) Learning in both experiments, (B) recognition priming in both experiments, (C) the first exposure
scan, and (D) the second exposure scan. As a reminder, the pre- and post-learning exposure

phases were divided into two scans, one that comprised A, C;, and baseline objects, and one

that only comprised B, C,, and baseline objects (see Methods). Italicized values indicate transition
probabilities that additionally are specific to objects from the same sequence. For example, during
learning, not only does a B object follow every A object, but the same B object follows the same

A object 100% of the time. In contrast, baseline objects are always followed by A objects, but the
specific objects vary.

A Follows
A B C, C, Base
A 0(0) 1(0) 0(0) 0(0) 0(0)
0(0) 0(0) 0.5(0) 0.5(0) 0(0)
Precedes G 0.5(0.04) 0(0) 0(0) 0(0) 0.5 (0.04)
C, 0.5(0.04) 0(0) 0(0) 0(0) 0.5(0.04)
Base 1) 0(0) 0(0) 0(0) 0(0)
B Follows
A B C, C, Base Foil
A 0(0) 1(0) 0(0) 0(0) 0(0) 0(0)
0.11 (0.08) 0(0) 0(0) 0(0) 0.18 (0.10) 0.71(0.11)
brecedes G 0(0) 0(0) 0(0) 1(0) 0(0) 0(0)
C, 0.15(0.10) 0(0) 0(0) 0(0) 0(0) 0.84 (10)
Base 0(0) 0(0) 100 0(0) 0(0) 0(0)
Foil 0.22 (0.03) 0(0) 0(0) 0(0) 0.25 (0.03) 0.52 (0.03)
C Follows
A C, Base
A 0.39 (0.05) 0.40 (0.06)  0.21(0.04)
Precedes G 0.39 (0.06) 0.42(0.05)  0.19(0.05)
Base 0.43 (0.08) 0.37(0.07)  0.20(0.06)
D Follows
B C, Base
B 0.39 (0.05) 0.39(0.05  0.21(0.04)
Precedes C, 0.41(0.04) 0.39(0.05  0.21(0.04)
Base 0.40 (0.08) 0.44(0.08)  0.16(0.05)

motor responses to A, B, and baseline object were not matched in this same manner (e.g. a ‘big’
baseline object could precede a ‘big’ A object). Because of this, accuracy of size judgments could
not be derived for these comparisons because the objects’ relative sizes might be judged differently
according to participants’ preferences and past experiences. Thus, accuracy was reported only for the
images with a clear answer (e.g. a 'big’ object following a ‘small’ object or vice versa), and RTs were
reported for all images regardless of accuracy for the objects with a clear answer.

Recognition priming task
In this task, all 60 objects from both learning sessions were presented intermixed with 40 novel foils.

As a cover task, participants were instructed to endorse each object as ‘old’ or ‘new’. They were asked
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to respond as quickly as possible without sacrificing accuracy, and they were not given an opt-out or
‘don’t know' option. The ITI between each trial was fixed at 1 s.

Unbeknownst to the participants, the order of the objects was manipulated to use response
priming as an index of participant’s implicit knowledge of the association between C, and C,. A
priming manipulation was used to test memory for ‘across-episode’ associations: namely, the associa-
tion between C objects that followed the same sequence of A and B. Critically, ABC; and ABC, were
never experienced together, but through the overlap in A and B objects, we expect the two episodes
to become associated. Note that to participants, C; and C, objects hold an identical mnemonic status,
as they both follow B an equal number of times and are presented within their sequence in random-
ized order over learning. We have assigned them with separate labels for the sole purpose of clarifying
the conditions of the priming manipulation. If participants successfully associated C; and C, through
their shared prior sequential information, we expected that the presentation of C; before C, would
facilitate processing of C,, resulting in a faster RT. Each C, object directly preceded the C, object that
shared an overlapping sequence of A and B during learning. As a control comparison, each C; object
followed a baseline object learned in the same session. Since C and baseline objects share no sequen-
tial information, we predicted that the baseline object would not facilitate of processing of C. This
order (baseline, C;, and C,) also controlled for motor response history, as we only included objects
that (1) were correctly endorsed as ‘old’ and (2) whose prior objects were also correctly endorsed as
‘old’. See Table 1B for transition probabilities between all objects during the recognition task.

Notably, the sequences that comprise both primed (C, -> C,) and control (baseline -> C;) conditions
were never present during learning. This means that if participants were able to extract rules about
different item types, both transitions are matched in that they would be considered expectation viola-
tions. For example, baseline objects are only followed by A or other baseline items during learning,
but in this task, they are followed by C, objects. Similarly, C; and C, objects are only preceded by B
objects during learning, but in this task, C, objects are preceded by C; objects. Because neither set
of transitions appears during learning, any difference in RTs across the conditions can be attributed to
differences in the sequence-specific associations between objects, rather than rule-based information
about sequential positions.

We additionally arranged B objects to always follow the A object from the same learning sequence.
Like with the C objects, responses times for A and B were only analyzed if both objects were correctly
endorsed as ‘old’ and if the prior object was also correctly endorsed. Note however that these
comparisons were secondary to our main planned analyses, and due to constraints in randomization,
A objects could either be followed by a different old object or a novel foil; thus the motor history for
these objects is not controlled for to the same extent as C objects.

Explicit memory task

This task followed the recognition priming task. Due to experimental error, two participants did not
complete this task, leaving a sample size of 71. In this task, participants were first made aware that the
objects in the learning task were arranged into sequences: "You may have noticed that during the size
task, some objects often appeared in sequences. For instance, maybe two objects always appeared
back-to-back, Or, maybe two objects were always preceded by the same sequence.’ This was accom-
panied by a visualization of a pair of overlapping ABC; and ABC, sequences. Participants then viewed
pairs of objects and were asked to rate their familiarity from ‘Not familiar’ to ‘Very familiar’ specifically
based on any sequence information they had learned. They responded by clicking on an un-numbered
sliding scale. Each pair was presented for 6 s, separated by a jittered ITI ranging from 0.5 to 1.5 s.
Participants viewed 60 pairs: 12 intact AB pairs; 12 re-arranged A and B objects; 12 intact C pairs; 12
re-arranged C objects; and 12 pairs of randomly paired baseline objects. All objects from sequences
were viewed twice, once with its corresponding pair and once as a foil in a re-arranged pair.

Unreported tasks

Participants from Experiment 1 were originally divided into two separate behavioral cohorts that
piloted the feasibility of other memory tests that were ultimately not included in Experiment 2. One
cohort (N = 48) completed a free recall task, and a second cohort (N = 42) completed a sequence
test that mirrored the learning procedure but intermixed sequences from both learning sessions.
These tasks were conducted at the end of the second session. Since all aspects of the procedure were
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identical across the two cohorts until the presentation of those tasks, we have analyzed these two
cohorts together to serve as Experiment 1.

Statistical analyses

Linear mixed-effects models were used to quantify recognition priming and to characterize changes
in RTs and accuracy across learning. Participant intercepts and slope terms for each included predictor
variable were modeled as random effects. Random effects were kept maximal except where needed
to avoid singular model fits (Barr et al., 2013). The significance of a given contrast was obtained
using Satterthwaite approximate degrees of freedom, resulting in F or t statistics and corresponding
p values. RTs for all learning trials were included in these models, but RTs during recognition priming
were only included if the current and prior objects were correctly endorsed as ‘old’ (see Recognition
Priming Task for more details). Accuracy was computed for any learning trial in which the preceding
object was coded to be a different size (e.g. an object bigger than a shoebox following an object
smaller than a shoebox), as comparisons among objects that were both bigger or both smaller are
likely more variable and dependent on participants’ subjective opinion.

Explicit memory performance was aggregated for each participant as the average difference in
familiarity between Intact and Re-arranged pairs, such that a value of O would indicate no reliable
discrimination and 1 would indicate maximal discrimination between the two conditions. These values
were entered into two-tailed paired t-tests to test for differences in behavioral integration between
the two learning sessions. One-sample t-tests with u = 0 were used to test for reliable above-chance
performance, which would reflect evidence for integration.

Experiment 2

Subjects

Twenty-eight right-handed, native English speakers (14 female, mean age: 27.14, range: 20-34)
participated in this experiment. Participants were recruited from New York University and the broader
community. The University Committee on Activities Involving Human Subjects approved all recruit-
ment and consent protocols. Three participants were excluded due to scanner malfunction, and one
withdrew after the first session, leaving 24 participants that were included in the following analyses.

Procedure
The experiment consisted of two sessions, separated by approximately 24 hr. The encoding and
priming tasks were identical to that of Experiment 1, except that encoding was split into eight scans
rather than four blocks. Additionally, in the first session, participants also first completed a resting-
state scan, and then viewed all object stimuli in a random order (pre-learning exposure). Then, partic-
ipants incidentally encoded sequences of the objects while performing a cover task (remote learning).
Finally, participants completed a second resting-state scan. The stimuli were projected onto a screen
in the bore of the scanner, and participants viewed them through a mirror attached to the head coil.

In the second session, participants began by incidentally learning a new set of object sequences
while performing the same cover task as in the first session (recent learning). After a resting-state scan,
participants completed several tasks consisting of both sets of stimuli from the two learning sessions.
First, they completed a priming task, and again viewed all stimuli in a random order (post-learning
exposure). Finally, participants completed an explicit test of memory integration.

The recognition priming task was the only task in the experiment that was not scanned, even
though participants completed the task in the scanner between the rest and post-learning similarity
scans.

Explicit memory task

At the end of the recent session, participants underwent two scans that tested explicit memory for
associations between A and B objects and associations between C; and C, objects (Figure 2B). The
same instructions as Experiment 1 were used to make participants aware of the object sequences they
had viewed. Then, in the first scan, participants were presented with an A object at the top of the
screen and two B objects at the bottom of the screen. Participants were instructed to choose which
B object was paired with the cued A object during learning. The foil B object was from a different
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sequence in the same learning session. These trials were intermixed with trials where B objects were
cued and participants chose the corresponding A object. The same cue/foil structure was used to
test explicit memory for the association between C; and C, objects in the second scan. Each trial was
presented for 4 s with a variable ITl ranging from 3 to 8 s.

Pre- and post-learning snapshots

Before the remote learning session on Day 1 and after the recent learning session and priming task
on Day 2, participants viewed all objects in a pseudo-random order over the course of two 11.8-min
scans. The goal of these scans was to create a template pattern for each object stimulus before and
after participants learned their temporal associations. With these template patterns, we measured
changes in representational similarity between objects that were associated through their temporal
structure. Changes in pattern similarity from pre- to post-learning among recently learned objects
would reflect changes in memory representations that corresponded to the temporal structure
learned a few minutes beforehand. In contrast, changes in pattern similarity among remotely learned
objects would reflect consolidation-related processes in addition to learning-related changes seen in
the recent condition.

Each object was presented for 2 s, separated by a variable ITI ranging from 2 to 5 s. Participants
were instructed to view each object and press a button if a small pound sign (#) appeared anywhere
on the image. A pound sign appeared on 20 images (approximately 8% of all trials presented). The
objects for which a pound sign appeared were presented a total of five times instead of four, and the
trial with the pound sign was omitted from all similarity analyses.

All object stimuli were presented across two scans each in the pre- and post-learning exposure
phases. The order during the pre-learning exposure was identical to the order during the post-learning
exposure in order to equate any potential confounds due to order effects or biases in modeling the
BOLD response. The order of the objects in each scan was randomized for each participant, with the
constraint that no object would repeat back-to-back. All A objects, all C, objects, and half of the base-
line objects were presented four times, intermixed in the first scan, and all B objects, all C, objects,
and the other half of the baseline objects were presented four times, intermixed in the second scan.
This arrangement enabled us to prioritize the analysis of similarity between A and B objects, and
C, and C,; objects, since the objects were presented in separate scans (Mumford et al., 2014). See
Table 1C and D for transition probabilities of objects in the two scans.

Resting-state scans

Participants completed three 6-min resting-state scans throughout the experiment: the first and last
scans of the remote session, and immediately after sequence learning during the recent session (pre-
learning, post-remote learning, and post-recent learning). During the scans, participants viewed a
blank gray screen and were instructed to remain awake while thinking about whatever they wanted
(Greicius et al., 2003; Tambini et al., 2010).

fMRI parameters

All scans were collected with a whole-head coil using a 3T Siemens Allegra MRI system. Functional
scans consisted of multi-echo gradient-echo planar images (EPI: 2000 ms repetition time (TR), 15 ms
echo time (TE), flip angle = 82°, field of view (FOV) = 192 x 240, 3 mm isotropic voxels), with 34 slices
oriented parallel to the anterior commissure - posterior commissure (AC-PC) line. For both sessions,
a customized calibration scan was collected using the same slice prescription as the EPI scans. At
the end of the second scan, a T1-weighted high-resolution magnetization-prepared rapid-acquisition
gradient echo (MPRAGE) sequence (1 x 1 x 1 mm voxels, 176 sagittal slices) was collected.

Preprocessing

All learning, rest, and pre- and post-learning exposure scans underwent the same preprocessing steps
with FSL (FEAT: http://www.fmrib.ox.ac.uk/fsl). The first six volumes of each EPI were discarded to
allow for scanner stabilization. Then, each scan was slice-time corrected and realigned to correct
for motion within each run. Smoothing differed based on the analysis: the learning and rest scans
were smoothed with a 6-mm full width at half maximum (FWHM) Gaussian kernel, while the pre- and
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post-learning scans were smoothed with a 3-mm FWHM Gaussian kernel. All scans were high-pass
filtered at 0.01 Hz to remove low-frequency drifts in signal (Cordes et al., 2001) and then aligned to
the first pre-learning similarity scan from the remote session.

Pre- and post-learning pattern similarity

The four pre- and post-learning scans were entered into separate general linear models (GLMs) after
preprocessing. In each scan, a separate 3-s boxcar regressor was created for the four presentations of
each object throughout the scan. One ‘junk’ regressor was created to model the onset of all trials for
which participants made a key press. These trials could either be the target trials presented with the
pound sign, or any other trial where the participant incorrectly pressed the button in response to a
stimulus with no pound sign. As with the learning scans, regressors accounting for head motion were
included as well.

These GLMs gave rise to two t-statistic maps for each object presented in the two learning sessions,
one from before learning and one from after learning. For each map, the spatial pattern of activity
across each ROl was extracted into a vector. These vectors were not z-scored; similarity analyses
did not meaningfully change if voxels were z-scored across all patterns. Pearson correlations were
computed to measure the neural similarity between vectors of all C objects presented. These were
organized into two separate matrices representing C objects from the recent and remote learning
sessions. The matrices were then transformed into vectors with the same order of matrix elements.
These two vectors were then correlated with the neural ‘integration’ model, a matrix of ones and
zeros that represented whether C objects were from overlapping or distinct sequences, that was
similarly organized into vector form (e.g. Figure 3A). A third vector was computed by subtracting
the pre-learning vector from the post-learning vector to represent learning-related changes in neural
similarity (e.g. Figure 3B). A high Point-biserial correlation between neural data and this integration
model would reflect greater similarity between images that followed the same AB pairs relative to
images that followed different AB pairs. These correlations were Fisher transformed before being
entered into statistical tests.

To control for the possibility that similarity between two objects was driven by differences in
average BOLD signal between them, we generated two additional correlation matrices composed of
C; and C, objects, arranged in the same order as the pattern similarity and integration matrices, sepa-
rately for the pre- and post-learning exposure scans. For each cell, we computed the absolute value of
the difference in BOLD signal across the two objects. This matrix thus represents cases where BOLD
signal of two objects is close or far apart. Then, since the relationship between the neural integration
model and similarity data for a given ROl and exposure phase was originally analyzed by transforming
the two matrices into vectors and computing their correlation, we also transformed the BOLD signal
matrix into a vector with the same order of elements and used it in partial correlation analyses that
corresponded to the main analyses (e.g. re-computing the correlation between mPFC similarity and
the neural integration model, while accounting for the difference in BOLD signal).

Resting-state connectivity

The rest scans were used to quantify low-frequency correlations between pairs of ROIs (Albert et al.,
2009; Tambini et al., 2010; Tompary et al., 2015), a measure of functional connectivity between
regions. To this end, the preprocessed data from the three rest scans were band-pass filtered leaving
signal between 0.01 and.1 Hz (Fox et al., 2005). They were then entered into separate GLMs to
model nuisance signals, including: six motion regressors and their temporal derivatives; stick functions
accounting for sudden head movements; and nuisance signals from white matter tissue and cerebral
spinal fluid (CSF) and their temporal derivatives. The motion regressors were derived from frame
displacement measurements identifying during motion correction. TRs with sudden head movements
were identified with FSL_motion_outliers. To create nuisance regressors, each participant’s MPRAGE
was segmented into separate masks comprising gray matter, white matter, and CSF, using FAST. The
gray matter and CSF masks were aligned to each participant’s functional volumes and then eroded
using fslmaths, to minimize the likelihood that these masks contained voxels that partially overlapped
with gray matter. Then, the average time course across all voxels in each mask was extracted from
the preprocessed rest scans. These time courses were entered into each run’s GLM along with their
temporal derivatives.
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The residuals of these GLMs were band-pass-filtered, leaving signal ranging from 0.01 and 0.1 Hz,
which is the frequency range known to correspond to correlations between gray matter regions in
functional neuroimaging data (Cordes et al., 2001). Then, the average time course for every volume
in each rest run was extracted for each ROI. These time courses were then correlated (Pearson correla-
tion), Fisher transformed, and entered into statistical tests.

Regions of interest
Bilateral hippocampus was defined using FSL's automatic subcortical segmentation protocol (FIRST),
which anatomically defines subcortical regions using each participant’s T1 anatomical image. To
isolate anterior and posterior portions, the number of slices in each hemisphere was divided into
three sections, and the anterior and posterior thirds were used as ROIs. All ROIs were resampled and
aligned to the first similarity scan during the remote session, consistent with the functional scans.
Medial PFC and LOC were functionally defined from the learning scans. Specifically, we sought
regions that were sensitive to the transition probabilities of the presented triplets. To identify changes
in BOLD signal to objects with different transition probabilities, we entered each learning scan into a
separate GLM after preprocessing. Two regressors were generated: predictable (B, C,, and C,), and
unpredictable (A, baseline). C; and C, objects were included in the same regressor because partici-
pants were unable to differentiate those objects during learning. Trials with no response, or with an
RT >3 SD from the participant’s mean RT, were separately modeled in a regressor of no interest. These
regressors and their temporal derivatives were convolved with FSL's canonical hemodynamic response

Table 2. R and L indicate right and left hemispheres.
Extent is size of the clusters in voxels. x, y, and z coordinates indicate the center of gravity in MNI
space (mm). p corresponds to corrected significance of cluster. * indicates clusters used for ROls.

Region Extent x y z P

Predictable > unpredictable

*R Parahippocampal, lateral occipital cortex 4644 28.1 -77.8 -3.82 <0.001
*L Parahippocampal, lateral occipital cortex 2623 =291 -80.3 -5.08 <0.001
L Angular gyrus, central opercular cortex 1246 =521 -43.3 27.1 <0.001
* Medial prefrontal cortex, frontal pole 1195 -2.43 54.5 431 <0.001
R Angular gyrus, middle temporal gyrus 911 62.2 -41.2 10.1 <0.001
Posterior medial cortex 675 -0.133 475 34 <0.001
Middle temporal gyrus, posterior 372 -56.2 -24.9 -5.67 <0.001
Posterior cingulate gyrus 308 143 =21 39.6  <0.001
R Parietal operculum cortex 217 59.7 -24.8 211 <0.001
R Inferior frontal gyrus 197 55.2 313 -1.84  0.001
L Putamen 168 -28.5 -10.8 5.01 0.003
L Middle temporal gyrus, anterior 142 -51.6 -1.3 -239 0.008
R Frontal Pole 98 16 53.2 28.1 0.04

Unpredictable > predictable

L Insula, inferior and middle frontal gyrus 1788 -39.7 20.1 12 <0.001
R Insula, inferior frontal gyrus 802 36.4 19.8 441 <0.001
L Supramarginal gyrus 252 -39.4 -43.7 43.1 <0.001
Paracingulate cortex 221 -0.922 2538 364  <0.001
R Middle frontal gyrus 199 443 337 214 0.001

L Inferior temporal gyrus 142 -52.7 -552  -10.6  0.008
L Superior lateral occipital cortex 98 -22.6 -65.7 385 004
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function (HRF). To account for head motion, the six regressors derived from the motion correction
procedure were included in each GLM along with their temporal derivatives and stick function regres-
sors derived by FSL_motion_outliers.

This resulted in 16 models per participant (8 per session), which were then entered into a fixed-
effects analysis in which the first-level estimates were averaged over the two sessions. The resulting
contrasts revealed clusters of voxels whose BOLD signal was reliably different for predictable versus
unpredictable objects. These estimates were averaged together at the group level in a random-effects
analysis. Clusters were determined using a statistical threshold of z> 3.1 and a corrected cluster signif-
icance threshold of p < 0.05 using FSL's Threshold-Free Cluster Enhancement.

This analysis revealed several regions including mPFC and LOC (Table 2). As the clusters that over-
lapped with our target ROIs encompassed other anatomically distinct areas, we masked both ROIs to
constrain their coverage. To create the mPFC ROI, we masked the cluster with areas A14m and A10m
(Audrain and McAndrews, 2022) from the Brainnetome atlas (https://atlas.brainnetome.org/). To
create a bilateral LOC ROI, we masked the two clusters extending over right and left lateral occipital
cortex and parahippocampal cortices with the top 90% voxels of the ‘Lateral Occipital Cortex, Inferior
Division” in the Harvard-Oxford Cortical probabilistic atlas.

Statistical tests
Analysis of the behavioral variables was identical to the procedure form Experiment 1, except that
explicit memory was aggregated for each participant as the proportion of responses that corre-
sponding to the C object with the same overlapping sequence as the target C object. For the neural
data, repeated-measures analyses of variance and two-tailed paired t-tests were used to test the
significance of group-level effects. Pearson correlations were used to quantify relationships between
neural and behavioral measures across participants. To examine how rest connectivity and mPFC
similarity related to recognition priming (Figure 5B), a multiple linear regression was computed with
both neural measures as predictors, and the significance of these was calculated with F values and
corresponding p values. Their unique variance explained was determined with semi-partial R? values.
Results were Bonferroni-corrected for multiple comparisons, depending on the number of regions
or region pairs for which a particular analysis was computed. Pattern similarity across C objects was
corrected for four regions (mPFC, LOC, anterior hippocampus, posterior hippocampus). Pattern simi-
larity across A and B objects was corrected for three regions (LOC, anterior hippocampus, posterior
hippocampus). Learning-related changes in rest was corrected for five region pairs (posterior hippo-
campus—LOC, anterior hippocampus—LOC, mPFC—LOC, posterior hippocampus—mPFC, anterior
hippocampus—mPFC).

Acknowledgements

Thank you to Max Bluestone and Yuri Jiao for help with data collection, Emily Cowan for helpful
discussions and comments on the manuscript, and Sarah Dubrow for encouragement and mentorship
in early stages of the project. The study was supported by National Institute of Mental Health Grant
MHO074692 (LD), Dart Neuroscience (LD), and NSF Graduate Research Fellowship Program (AT).

Additional information

Competing interests
Lila Davachi: Reviewing editor, eLife. The other author declares that no competing interests exist.

Funding

Funder Grant reference number Author
National Institute of Mental MH074692 Lila Davachi
Health

Dart Neuroscience Lila Davachi

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 31 of 38


https://doi.org/10.7554/eLife.84359
https://atlas.brainnetome.org/

e Llfe Research article

Neuroscience

Funder Grant reference number Author
National Science GRFP Alexa Tompary
Foundation

The funders had no role in study design, data collection, and interpretation, or the
decision to submit the work for publication.

Author contributions

Alexa Tompary, Conceptualization, Data curation, Software, Formal analysis, Validation, Investiga-
tion, Visualization, Methodology, Writing - original draft, Project administration, Writing - review and
editing; Lila Davachi, Conceptualization, Supervision, Funding acquisition, Methodology, Project
administration, Writing - review and editing

Author ORCIDs
Alexa Tompary @ https://orcid.org/0000-0001-7735-3849
Lila Davachi ® https://orcid.org/0000-0003-4317-0889

Ethics

Consent to participate and consent to publish was obtained for all participants prior to beginning the
first experimental session. Open their arrival to the session, participants read a consent document
and signed at the bottom. New York University's University Committee on Activities Involving Human
Subjects approved all recruitment and consent protocols (HS#10-0090).

Decision letter and Author response
Decision letter https://doi.org/10.7554/elife.84359.sa
Author response https://doi.org/10.7554/elife.84359.sa2

Additional files

Supplementary files
e MDAR checklist

Data availability

Source data files have been provided for all figures, including figure supplements. Raw data and
analysis code required to reproduce figures and statistics is provided for the behavioral data from
both experiments. Similarity and connectivity values are provided with analysis code needed to repro-
duce all figures and reported statistics. All of these materials are currently publicly available on Open
Science Framework. Unprocessed brain data is available on OpenNeuro.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Tompary A 2023 Integration of overlapping  https://osf.io/es8z] Open Science Framework,
sequences emerges with es8zj

consolidation through
mPFC neural ensembles
and hippocampal-cortical
connectivity

Tompary A, Davachi L 2024 Integration of overlapping  https://doi.org/10. OpenNeuro, 10.18112/
sequences emerges with  18112/openneuro. openneuro.ds005581.v1.0.0
consolidation through ds005581.v1.0.0

mPFC neural ensembles
and hippocampal-cortical
connectivity

References

Abolghasem Z, Teng TH-T, Nexha E, Zhu C, Jean CS, Castrillon M, Che E, Di Nallo EV, Schlichting ML. 2023.
Learning strategy differentially impacts memory connections in children and adults. Developmental Science
26:13371. DOI: https://doi.org/10.1111/desc.13371, PMID: 36647714

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 320f 38


https://doi.org/10.7554/eLife.84359
https://orcid.org/0000-0001-7735-3849
https://orcid.org/0000-0003-4317-0889
https://doi.org/10.7554/eLife.84359.sa1
https://doi.org/10.7554/eLife.84359.sa2
https://osf.io/es8zj
https://osf.io/es8zj
https://doi.org/10.18112/openneuro.ds005581.v1.0.0
https://osf.io/es8zj
https://doi.org/10.18112/openneuro.ds005581.v1.0.0
https://doi.org/10.18112/openneuro.ds005581.v1.0.0
https://doi.org/10.18112/openneuro.ds005581.v1.0.0
https://doi.org/10.1111/desc.13371
http://www.ncbi.nlm.nih.gov/pubmed/36647714

e Llfe Research article

Neuroscience

Acuna BD, Eliassen JC, Donoghue JP, Sanes JN. 2002a. Frontal and parietal lobe activation during transitive
inference in humans. Cerebral Cortex 12:1312-1321. DOI: https://doi.org/10.1093/cercor/12.12.1312, PMID:
12427681

Acuna BD, Sanes JN, Donoghue JP. 2002b. Cognitive mechanisms of transitive inference. Experimental Brain
Research 146:1-10. DOI: https://doi.org/10.1007/s00221-002-1092-y

Alba JW, Hasher L. 1983. Is memory schematic? Psychological Bulletin 93:203-231. DOI: https://doi.org/10.
1037/0033-2909.93.2.203

Albert NB, Robertson EM, Miall RC. 2009. The resting human brain and motor learning. Current Biology
19:1023-1027. DOI: https://doi.org/10.1016/j.cub.2009.04.028, PMID: 19427210

Anderson RC. 1984. Role of the reader’s schema in comprehension, learning, and memory. Anderson R, Osborn
J, Tierney R (Eds). Theoretical Models and Processes of Reading. Newark: International Reading Association. p.
136-145.

Antony JW, Ferreira CS, Norman KA, Wimber M. 2017. Retrieval as a fast route to memory consolidation. Trends
in Cognitive Sciences 21:573-576. DOI: https://doi.org/10.1016/].tics.2017.05.001, PMID: 28583416

Audrain S, McAndrews MP. 2022. Schemas provide a scaffold for neocortical integration of new memories over
time. Nature Communications 13:5795. DOI: https://doi.org/10.1038/s41467-022-33517-0, PMID: 36184668

Barr DJ, Levy R, Scheepers C, Tily HJ. 2013. Random effects structure for confirmatory hypothesis testing: Keep
it maximal. Journal of Memory and Language 68:255-278. DOI: https://doi.org/10.1016/j.jml.2012.11.001,
PMID: 24403724

Bartlett FC. 1932. A theory of remembering. Bartlett FC (Ed). Remembering: A Study in Experimental and Social
Psychology. Cambridge University Press. p. 1-317.

Batterink LJ, Paller KA. 2017. Sleep-based memory processing facilitates grammatical generalization: Evidence
from targeted memory reactivation. Brain and Language 167:83-93. DOI: https://doi.org/10.1016/j.band|.
2015.09.003, PMID: 26443322

Bein O, Reggev N, Maril A. 2014. Prior knowledge influences on hippocampus and medial prefrontal cortex
interactions in subsequent memory. Neuropsychologia 64:320-330. DOI: https://doi.org/10.1016/].
neuropsychologia.2014.09.046, PMID: 25301385

Bellana B, Mansour R, Ladyka-Wojcik N, Grady CL, Moscovitch M. 2021. The influence of prior knowledge on the
formation of detailed and durable memories. Journal of Memory and Language 121:104264. DOI: https://doi.
org/10.1016/j.jml.2021.104264

Bonasia K, Sekeres MJ, Gilboa A, Grady CL, Winocur G, Moscovitch M. 2018. Prior knowledge modulates the
neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of
Learning and Memory 153:26-39. DOI: https://doi.org/10.1016/j.nlm.2018.02.017, PMID: 29474955

Bonnici HM, Chadwick MJ, Lutti A, Hassabis D, Weiskopf N, Maguire EA. 2012. Detecting representations of
recent and remote autobiographical memories in vmPFC and hippocampus. The Journal of Neuroscience
32:16982-16991. DOI: https://doi.org/10.1523/JNEUROSCI.2475-12.2012, PMID: 23175849

Bowers JS, Davis CJ, Hanley DA. 2005. Interfering neighbours: the impact of novel word learning on the
identification of visually similar words. Cognition 97:B45-B54. DOI: https://doi.org/10.1016/j.cognition.2005.
02.002, PMID: 15925358

Bransford JD, Johnson MK. 1972. Contextual prerequisites for understanding: Some investigations of
comprehension and recall. Journal of Verbal Learning and Verbal Behavior 11:717-726. DOI: https://doi.org/
10.1016/50022-5371(72)80006-9

Brown BR, Evans SH. 1969. Perceptual learning in pattern discrimination tasks with two and three schema
categories. Psychonomic Science 15:101-103. DOI: https://doi.org/10.3758/BF03336223

Brunec IK, Robin J, Olsen RK, Moscovitch M, Barense MD. 2020. Integration and differentiation of hippocampal
memory traces. Neuroscience & Biobehavioral Reviews 118:196-208. DOI: https://doi.org/10.1016/j.neubiorev.
2020.07.024

Chanales AJH, Oza A, Favila SE, Kuhl BA. 2017. Overlap among spatial memories triggers repulsion of
hippocampal representations. Current Biology 27:2307-2317.. DOI: https://doi.org/10.1016/j.cub.2017.06.057,
PMID: 28736170

Chanales AJH, Tremblay-McGaw AG, Kuhl BA. 2020. Adaptive repulsion of long-term memory representations is
triggered by event similarity. bioRxiv. DOI: https://doi.org/10.1101/2020.01.14.900381

Chatburn A, Lushington K, Kohler MJ. 2014. Complex associative memory processing and sleep: A systematic
review and meta-analysis of behavioural evidence and underlying EEG mechanisms. Neuroscience &
Biobehavioral Reviews 47:646-655. DOI: https://doi.org/10.1016/].neubiorev.2014.10.018

Collins JA, Dickerson BC. 2019. Functional connectivity in category-selective brain networks after encoding
predicts subsequent memory. Hippocampus 29:440-450. DOI: https://doi.org/10.1002/hipo.23003, PMID:
30009477

Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME. 2001.
Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. American
Journal of Neuroradiology 22:1326-1333 PMID: 11498421.

Coutanche MN, Thompson-Schill SL. 2014. Fast mapping rapidly integrates information into existing memory
networks. Journal of Experimental Psychology. General 143:2296-2303. DOI: https://doi.org/10.1037/
xge0000020, PMID: 25222265

Coutanche MN, Thompson-Schill SL. 2015. Rapid consolidation of new knowledge in adulthood via fast
mapping. Trends in Cognitive Sciences 19:486-488. DOI: https://doi.org/10.1016/].tics.2015.06.001

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 330f 38


https://doi.org/10.7554/eLife.84359
https://doi.org/10.1093/cercor/12.12.1312
http://www.ncbi.nlm.nih.gov/pubmed/12427681
https://doi.org/10.1007/s00221-002-1092-y
https://doi.org/10.1037/0033-2909.93.2.203
https://doi.org/10.1037/0033-2909.93.2.203
https://doi.org/10.1016/j.cub.2009.04.028
http://www.ncbi.nlm.nih.gov/pubmed/19427210
https://doi.org/10.1016/j.tics.2017.05.001
http://www.ncbi.nlm.nih.gov/pubmed/28583416
https://doi.org/10.1038/s41467-022-33517-0
http://www.ncbi.nlm.nih.gov/pubmed/36184668
https://doi.org/10.1016/j.jml.2012.11.001
http://www.ncbi.nlm.nih.gov/pubmed/24403724
https://doi.org/10.1016/j.bandl.2015.09.003
https://doi.org/10.1016/j.bandl.2015.09.003
http://www.ncbi.nlm.nih.gov/pubmed/26443322
https://doi.org/10.1016/j.neuropsychologia.2014.09.046
https://doi.org/10.1016/j.neuropsychologia.2014.09.046
http://www.ncbi.nlm.nih.gov/pubmed/25301385
https://doi.org/10.1016/j.jml.2021.104264
https://doi.org/10.1016/j.jml.2021.104264
https://doi.org/10.1016/j.nlm.2018.02.017
http://www.ncbi.nlm.nih.gov/pubmed/29474955
https://doi.org/10.1523/JNEUROSCI.2475-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23175849
https://doi.org/10.1016/j.cognition.2005.02.002
https://doi.org/10.1016/j.cognition.2005.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15925358
https://doi.org/10.1016/S0022-5371(72)80006-9
https://doi.org/10.1016/S0022-5371(72)80006-9
https://doi.org/10.3758/BF03336223
https://doi.org/10.1016/j.neubiorev.2020.07.024
https://doi.org/10.1016/j.neubiorev.2020.07.024
https://doi.org/10.1016/j.cub.2017.06.057
http://www.ncbi.nlm.nih.gov/pubmed/28736170
https://doi.org/10.1101/2020.01.14.900381
https://doi.org/10.1016/j.neubiorev.2014.10.018
https://doi.org/10.1002/hipo.23003
http://www.ncbi.nlm.nih.gov/pubmed/30009477
http://www.ncbi.nlm.nih.gov/pubmed/11498421
https://doi.org/10.1037/xge0000020
https://doi.org/10.1037/xge0000020
http://www.ncbi.nlm.nih.gov/pubmed/25222265
https://doi.org/10.1016/j.tics.2015.06.001

(3
ELlfe Research article Neuroscience

Cowan ET, Liu A, Henin S, Kothare S, Devinsky O, Davachi L. 2020. Sleep spindles promote the restructuring of
memory representations in ventromedial prefrontal cortex through enhanced hippocampal-cortical functional
connectivity. The Journal of Neuroscience 40:1909-1919. DOI: https://doi.org/10.1523/JNEUROSCI.1946-19.
2020

Cowan ET, Schapiro AC, Dunsmoor JE, Murty VP. 2021. Memory consolidation as an adaptive process.
Psychonomic Bulletin & Review 28:1796-1810. DOI: https://doi.org/10.3758/s13423-021-01978-x

Dandolo LC, Schwabe L. 2018. Time-dependent memory transformation along the hippocampal anterior—
posterior axis. Nature Communications 9:1205. DOI: https://doi.org/10.1038/s41467-018-03661-7

Danker JF, Anderson JR. 2010. The ghosts of brain states past: remembering reactivates the brain regions
engaged during encoding. Psychological Bulletin 136:87-102. DOI: https://doi.org/10.1037/a0017937, PMID:
20063927

Davachi L, Danker JF. 2013. The cognitive neuroscience of episodic memory. Ochsner KN, Kosslyn SM (Eds). The
Handbook of Cognitive Neuroscience. Oxford University Press. p. 127-139.

Davachi L, DuBrow S. 2015. How the hippocampus preserves order: the role of prediction and context. Trends in
Cognitive Sciences 19:92-99. DOI: https://doi.org/10.1016/].tics.2014.12.004

Davis MH, Di Betta AM, Macdonald MJE, Gaskell MG. 2009. Learning and consolidation of novel spoken words.
Journal of Cognitive Neuroscience 21:803-820. DOI: https://doi.org/10.1162/jocn.2009.21059, PMID:
18578598

de Voogd LD, Fernandez G, Hermans EJ. 2016. Awake reactivation of emotional memory traces through
hippocampal-neocortical interactions. Neurolmage 134:563-572. DOI: https://doi.org/10.1016/j.neuroimage.
2016.04.026, PMID: 27095308

DeVito LM, Lykken C, Kanter BR, Eichenbaum H. 2010. Prefrontal cortex: Role in acquisition of overlapping
associations and transitive inference. Learning & Memory 17:161-167. DOI: https://doi.org/10.1101/Im.
1685710

Dimsdale-Zucker HR, Ritchey M, Ekstrom AD, Yonelinas AP, Ranganath C. 2018. CA1 and CA3 differentially
support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature
Communications 9:294. DOI: https://doi.org/10.1038/s41467-017-02752-1, PMID: 29348512

Djonlagic I, Rosenfeld A, Shohamy D, Myers C, Gluck M, Stickgold R. 2009. Sleep enhances category learning.
Learning & Memory 16:751-755. DOI: https://doi.org/10.1101/Im.1634509

Drascher ML, Kuhl BA. 2022. Long-term memory interference is resolved via repulsion and precision along
diagnostic memory dimensions. Psychonomic Bulletin & Review 29:1898-1912. DOI: https://doi.org/10.3758/
s13423-022-02082-4

DuBrow S, Davachi L. 2013. The influence of context boundaries on memory for the sequential order of events.
Journal of Experimental Psychology. General 142:1277-1286. DOI: https://doi.org/10.1037/a0034024, PMID:
23957281

DuBrow S, Davachi L. 2014. Temporal memory is shaped by encoding stability and intervening item reactivation.
The Journal of Neuroscience 34:13998-14005. DOI: https://doi.org/10.1523/JNEUROSCI.2535-14.2014, PMID:
25319696

Durrant SJ, Taylor C, Cairney S, Lewis PA. 2011. Sleep-dependent consolidation of statistical learning.
Neuropsychologia 49:1322-1331. DOI: https://doi.org/10.1016/j.neuropsychologia.2011.02.015, PMID:
21335017

Durrant SJ, Cairney SA, Lewis PA. 2013. Overnight consolidation aids the transfer of statistical knowledge from
the medial temporal lobe to the striatum. Cerebral Cortex 23:2467-2478. DOI: https://doi.org/10.1093/cercor/
bhs244, PMID: 22879350

Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP. 2007. Human relational memory requires time and sleep.
PNAS 104:7723-7728. DOI: https://doi.org/10.1073/pnas.0700094104

Ezzyat Y, Inhoff MC, Davachi L. 2018. Differentiation of human medial prefrontal cortex activity underlies
long-term resistance to forgetting in memory. The Journal of Neuroscience 38:10244-10254. DOI: https://doi.
org/10.1523/JNEUROSCI.2290-17.2018

Favila SE, Chanales AJH, Kuhl BA. 2016. Experience-dependent hippocampal pattern differentiation prevents
interference during subsequent learning. Nature Communications 7:11066. DOI: https://doi.org/10.1038/
ncomms11066, PMID: 27925613

Ferreira CS, Charest |, Wimber M. 2019. Retrieval aids the creation of a generalised memory trace and
strengthens episode-unique information. Neurolmage 201:115996. DOI: https://doi.org/10.1016/j.neuroimage.
2019.07.009, PMID: 31280012

Fischer S, Drosopoulos S, Tsen J, Born J. 2006. Implicit learning—explicit knowing: a role for sleep in memory
system interaction. Journal of Cognitive Neuroscience 18:311-319. DOI: https://doi.org/10.1162/jocn.2006.18.
3.311

Fox MD, Snyder AZ, Barch DM, Gusnard DA, Raichle ME. 2005. Transient BOLD responses at block transitions.
Neurolmage 28:956-966. DOI: https://doi.org/10.1016/j.neuroimage.2005.06.025

Fox MD, Snyder AZ, Vincent JL, Raichle ME. 2007. Intrinsic fluctuations within cortical systems account for
intertrial variability in human behavior. Neuron 56:171-184. DOI: https://doi.org/10.1016/j.neuron.2007.08.023

Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ. 2004. The involvement of the anterior cingulate
cortex in remote contextual fear memory. Science 304:881-883. DOI: https://doi.org/10.1126/science.
1094804, PMID: 15131309

Graveline YM, Wamsley EJ. 2017. The impact of sleep on novel concept learning. Neurobiology of Learning and
Memory 141:19-26. DOI: https://doi.org/10.1016/j.nIm.2017.03.008

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 34 of 38


https://doi.org/10.7554/eLife.84359
https://doi.org/10.1523/JNEUROSCI.1946-19.2020
https://doi.org/10.1523/JNEUROSCI.1946-19.2020
https://doi.org/10.3758/s13423-021-01978-x
https://doi.org/10.1038/s41467-018-03661-7
https://doi.org/10.1037/a0017937
http://www.ncbi.nlm.nih.gov/pubmed/20063927
https://doi.org/10.1016/j.tics.2014.12.004
https://doi.org/10.1162/jocn.2009.21059
http://www.ncbi.nlm.nih.gov/pubmed/18578598
https://doi.org/10.1016/j.neuroimage.2016.04.026
https://doi.org/10.1016/j.neuroimage.2016.04.026
http://www.ncbi.nlm.nih.gov/pubmed/27095308
https://doi.org/10.1101/lm.1685710
https://doi.org/10.1101/lm.1685710
https://doi.org/10.1038/s41467-017-02752-1
http://www.ncbi.nlm.nih.gov/pubmed/29348512
https://doi.org/10.1101/lm.1634509
https://doi.org/10.3758/s13423-022-02082-4
https://doi.org/10.3758/s13423-022-02082-4
https://doi.org/10.1037/a0034024
http://www.ncbi.nlm.nih.gov/pubmed/23957281
https://doi.org/10.1523/JNEUROSCI.2535-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25319696
https://doi.org/10.1016/j.neuropsychologia.2011.02.015
http://www.ncbi.nlm.nih.gov/pubmed/21335017
https://doi.org/10.1093/cercor/bhs244
https://doi.org/10.1093/cercor/bhs244
http://www.ncbi.nlm.nih.gov/pubmed/22879350
https://doi.org/10.1073/pnas.0700094104
https://doi.org/10.1523/JNEUROSCI.2290-17.2018
https://doi.org/10.1523/JNEUROSCI.2290-17.2018
https://doi.org/10.1038/ncomms11066
https://doi.org/10.1038/ncomms11066
http://www.ncbi.nlm.nih.gov/pubmed/27925613
https://doi.org/10.1016/j.neuroimage.2019.07.009
https://doi.org/10.1016/j.neuroimage.2019.07.009
http://www.ncbi.nlm.nih.gov/pubmed/31280012
https://doi.org/10.1162/jocn.2006.18.3.311
https://doi.org/10.1162/jocn.2006.18.3.311
https://doi.org/10.1016/j.neuroimage.2005.06.025
https://doi.org/10.1016/j.neuron.2007.08.023
https://doi.org/10.1126/science.1094804
https://doi.org/10.1126/science.1094804
http://www.ncbi.nlm.nih.gov/pubmed/15131309
https://doi.org/10.1016/j.nlm.2017.03.008

e Llfe Research article

Neuroscience

Greene AJ, Gross WL, Elsinger CL, Rao SM. 2006. An FMRI analysis of the human hippocampus: inference,
context, and task awareness. Journal of Cognitive Neuroscience 18:1156-1173. DOI: https://doi.org/10.1162/
jocn.2006.18.7.1156, PMID: 16839289

Greicius MD, Krasnow B, Reiss AL, Menon V. 2003. Functional connectivity in the resting brain: A network
analysis of the default mode hypothesis. PNAS 100:253-258. DOI: https://doi.org/10.1073/pnas.0135058100

Gruber MJ, Ritchey M, Wang SF, Doss MK, Ranganath C. 2016. Post-learning hippocampal dynamics promote
preferential retention of rewarding events. Neuron 89:1110-1120. DOI: https://doi.org/10.1016/j.neuron.2016.
01.017, PMID: 26875624

Heckers S, Zalesak M, Weiss AP, Ditman T, Titone D. 2004. Hippocampal activation during transitive inference in
humans. Hippocampus 14:153-162. DOI: https://doi.org/10.1002/hipo.10189, PMID: 15098721

Henke K. 2010. A model for memory systems based on processing modes rather than consciousness. Nature
Reviews. Neuroscience 11:523-532. DOI: https://doi.org/10.1038/nrn2850, PMID: 20531422

Hennies N, Lewis PA, Durrant SJ, Cousins JN, Lambon Ralph MA. 2014. Time- but not sleep-dependent
consolidation promotes the emergence of cross-modal conceptual representations. Neuropsychologia
63:116-123. DOI: https://doi.org/10.1016/j.neuropsychologia.2014.08.021

Hindy NC, Ng FY, Turk-Browne NB. 2016. Linking pattern completion in the hippocampus to predictive coding in
visual cortex. Nature Neuroscience 19:665-667. DOI: https://doi.org/10.1038/nn.4284

Hsieh LT, Gruber MJ, Jenkins LJ, Ranganath C. 2014. Hippocampal activity patterns carry information about
objects in temporal context. Neuron 81:1165-1178. DOI: https://doi.org/10.1016/j.neuron.2014.01.015

Hulbert JC, Norman KA. 2015. Neural differentiation tracks improved recall of competing memories following
interleaved study and retrieval practice. Cerebral Cortex 25:3994-4008. DOI: https://doi.org/10.1093/cercor/
bhu284

Kalm K, Davis MH, Norris D. 2013. Individual sequence representations in the medial temporal lobe. Journal of
Cognitive Neuroscience 25:1111-1121. DOI: https://doi.org/10.1162/jocn_a_00378

Karlsson Wirebring L, Wiklund-Hornqvist C, Eriksson J, Andersson M, Jonsson B, Nyberg L. 2015. Lesser
neural pattern similarity across repeated tests is associated with better long-term memory retention.
Journal of Neuroscience 35:9595-9602. DOI: https://doi.org/10.1523/JNEUROSCI.3550-14.2015, PMID:
26134642

Keller TA, Just MA. 2016. Structural and functional neuroplasticity in human learning of spatial routes.
Neurolmage 125:256-266. DOI: https://doi.org/10.1016/j.neuroimage.2015.10.015, PMID: 26477660

Kok P, Jehee JFM, de Lange FP. 2012. Less is more: expectation sharpens representations in the primary visual
cortex. Neuron 75:265-270. DOI: https://doi.org/10.1016/j.neuron.2012.04.034, PMID: 22841311

Kok P, Turk-Browne NB. 2018. Associative prediction of visual shape in the hippocampus. Journal of
Neuroscience 38:6888-6899. DOI: https://doi.org/10.1523/JNEUROSCI.0163-18.2018

Koscik TR, Tranel D. 2012. The human ventromedial prefrontal cortex is critical for transitive inference. Journal of
Cognitive Neuroscience 24:1191-1204. DOI: https://doi.org/10.1162/jocn_a_00203

Krenz V, Alink A, Sommer T, Roozendaal B, Schwabe L. 2023. Time-dependent memory transformation in
hippocampus and neocortex is semantic in nature. Nature Communications 14:6037. DOI: https://doi.org/10.
1038/s41467-023-41648-1

Kuhl BA, Shah AT, DuBrow S, Wagner AD. 2010. Resistance to forgetting associated with hippocampus-
mediated reactivation during new learning. Nature Neuroscience 13:501-506. DOI: https://doi.org/10.1038/nn.
2498

Kuhl BA, Chun MM. 2014. Successful remembering elicits event-specific activity patterns in lateral parietal
cortex. The Journal of Neuroscience 34:8051-8060. DOI: https://doi.org/10.1523/JNEUROSCI.4328-13.2014

Kumaran D, Summerfield JJ, Hassabis D, Maguire EA. 2009. Tracking the emergence of conceptual knowledge
during human decision making. Neuron 63:889-901. DOI: https://doi.org/10.1016/j.neuron.2009.07.030,
PMID: 19778516

Kuriyama K, Stickgold R, Walker MP. 2004. Sleep-dependent learning and motor-skill complexity. Learning &
Memory 11:705-713. DOI: https://doi.org/10.1101/Im.76304

Lau H, Tucker MA, Fishbein W. 2010. Daytime napping: Effects on human direct associative and relational
memory. Neurobiology of Learning and Memory 93:554-560. DOI: https://doi.org/10.1016/j.nlm.2010.02.003

Lerner |, Gluck MA. 2019. Sleep and the extraction of hidden regularities: A systematic review and the
importance of temporal rules. Sleep Medicine Reviews 47:39-50. DOI: https://doi.org/10.1016/].smrv.2019.05.
004, PMID: 31252335

Liu ZX, Grady C, Moscovitch M. 2017. Effects of prior-knowledge on brain activation and connectivity during
associative memory encoding. Cerebral Cortex 27:1991-2009. DOI: https://doi.org/10.1093/cercor/bhw047,
PMID: 26941384

Liu ZX, Grady C, Moscovitch M. 2018. The effect of prior knowledge on post-encoding brain connectivity and its
relation to subsequent memory. Neurolmage 167:211-223. DOI: https://doi.org/10.1016/j.neuroimage.2017.
11.032, PMID: 29158201

Luo Y, Zhao J. 2018. Statistical learning creates novel object associations via transitive relations. Psychological
Science 29:1207-1220. DOI: https://doi.org/10.1177/0956797618762400, PMID: 29787352

McClelland JL, McNaughton BL, O'Reilly RC. 1995. Why there are complementary learning systems in the
hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and
memory. Psychological Review 102:419-457. DOI: https://doi.org/10.1037/0033-295X.102.3.419, PMID:
7624455

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 350f 38


https://doi.org/10.7554/eLife.84359
https://doi.org/10.1162/jocn.2006.18.7.1156
https://doi.org/10.1162/jocn.2006.18.7.1156
http://www.ncbi.nlm.nih.gov/pubmed/16839289
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1016/j.neuron.2016.01.017
https://doi.org/10.1016/j.neuron.2016.01.017
http://www.ncbi.nlm.nih.gov/pubmed/26875624
https://doi.org/10.1002/hipo.10189
http://www.ncbi.nlm.nih.gov/pubmed/15098721
https://doi.org/10.1038/nrn2850
http://www.ncbi.nlm.nih.gov/pubmed/20531422
https://doi.org/10.1016/j.neuropsychologia.2014.08.021
https://doi.org/10.1038/nn.4284
https://doi.org/10.1016/j.neuron.2014.01.015
https://doi.org/10.1093/cercor/bhu284
https://doi.org/10.1093/cercor/bhu284
https://doi.org/10.1162/jocn_a_00378
https://doi.org/10.1523/JNEUROSCI.3550-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26134642
https://doi.org/10.1016/j.neuroimage.2015.10.015
http://www.ncbi.nlm.nih.gov/pubmed/26477660
https://doi.org/10.1016/j.neuron.2012.04.034
http://www.ncbi.nlm.nih.gov/pubmed/22841311
https://doi.org/10.1523/JNEUROSCI.0163-18.2018
https://doi.org/10.1162/jocn_a_00203
https://doi.org/10.1038/s41467-023-41648-1
https://doi.org/10.1038/s41467-023-41648-1
https://doi.org/10.1038/nn.2498
https://doi.org/10.1038/nn.2498
https://doi.org/10.1523/JNEUROSCI.4328-13.2014
https://doi.org/10.1016/j.neuron.2009.07.030
http://www.ncbi.nlm.nih.gov/pubmed/19778516
https://doi.org/10.1101/lm.76304
https://doi.org/10.1016/j.nlm.2010.02.003
https://doi.org/10.1016/j.smrv.2019.05.004
https://doi.org/10.1016/j.smrv.2019.05.004
http://www.ncbi.nlm.nih.gov/pubmed/31252335
https://doi.org/10.1093/cercor/bhw047
http://www.ncbi.nlm.nih.gov/pubmed/26941384
https://doi.org/10.1016/j.neuroimage.2017.11.032
https://doi.org/10.1016/j.neuroimage.2017.11.032
http://www.ncbi.nlm.nih.gov/pubmed/29158201
https://doi.org/10.1177/0956797618762400
http://www.ncbi.nlm.nih.gov/pubmed/29787352
https://doi.org/10.1037/0033-295X.102.3.419
http://www.ncbi.nlm.nih.gov/pubmed/7624455

e Llfe Research article

Neuroscience

McCormick C, St-Laurent M, Ty A, Valiante TA, McAndrews MP. 2015. Functional and effective hippocampal-
neocortical connectivity during construction and elaboration of autobiographical memory retrieval. Cerebral
Cortex 25:1297-1305. DOI: https://doi.org/10.1093/cercor/bht324, PMID: 24275829

McNeill D. 1963. The origin of associations within the same grammatical class. Journal of Verbal Learning and
Verbal Behavior 2:250-262. DOI: https://doi.org/10.1016/S0022-5371(63)80091-2

Milivojevic B, Vicente-Grabovetsky A, Doeller CF. 2015. Insight reconfigures hippocampal-prefrontal memories.
Current Biology 25:821-830. DOI: https://doi.org/10.1016/].cub.2015.01.033, PMID: 25728693

Molitor RJ, Sherrill KR, Morton NW, Miller AA, Preston AR. 2021. Memory Reactivation during Learning
Simultaneously Promotes Dentate Gyrus/CA, ; Pattern Differentiation and CA; Memory Integration. The
Journal of Neuroscience 41:726-738. DOI: https://doi.org/10.1523/JNEUROSCI.0394-20.2020, PMID:
33239402

Morrissey MD, Insel N, Takehara-Nishiuchi K. 2017. Generalizable knowledge outweighs incidental details in
prefrontal ensemble code over time. eLife 6:22177. DOI: https://doi.org/10.7554/elife.22177

Morton NW, Schlichting ML, Preston AR. 2020. Representations of common event structure in medial temporal
lobe and frontoparietal cortex support efficient inference. PNAS 117:29338-29345. DOI: https://doi.org/10.
1073/pnas. 1912338117

Mumford JA, Davis T, Poldrack RA. 2014. The impact of study design on pattern estimation for single-trial
multivariate pattern analysis. Neurolmage 103:130-138. DOI: https://doi.org/10.1016/j.neurocimage.2014.09.
026, PMID: 25241907

Murty VP, Tompary A, Adcock RA, Davachi L. 2017. Selectivity in postencoding connectivity with high-level
visual cortex is associated with reward-motivated memory. Journal of Neuroscience 37:537-545. DOI: https://
doi.org/10.1523/JNEUROSCI.4032-15.2017

Murty VP, DuBrow S, Davachi L. 2019. Decision-making increases episodic memory via postencoding
consolidation. Journal of Cognitive Neuroscience 31:1308-1317. DOI: https://doi.org/10.1162/jocn_a_01321,
PMID: 30063181

Nadel L, Samsonovich A, Ryan L, Moscovitch M. 2000. Multiple trace theory of human memory: Computational,
neuroimaging, and neuropsychological results. Hippocampus 10:352-368. DOI: https://doi.org/10.1002/1098-
1063(2000)10:43.0.CO;2-D

Pajkert A, Finke C, Shing YL, Hoffmann M, Sommer W, Heekeren HR, Ploner CJ. 2017. Memory integration in
humans with hippocampal lesions. Hippocampus 27:1230-1238. DOI: https://doi.org/10.1002/hipo.22766,
PMID: 28768057

Paz R, Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I. 2010. A neural substrate in the human
hippocampus for linking successive events. PNAS 107:6046-6051. DOI: https://doi.org/10.1073/pnas.
0910834107

Posner M, Keele SW. 1968. On the genesis of abstract ideas. Journal of Experimental Psychology 77:353-363.
DOI: https://doi.org/10.1037/h0025953, PMID: 5665566

Preston AR, Shrager Y, Dudukovic NM, Gabrieli JDE. 2004. Hippocampal contribution to the novel use of
relational information in declarative memory. Hippocampus 14:148-152. DOI: https://doi.org/10.1002/hipo.
20009

Preston AR, Eichenbaum H. 2013. Interplay of hippocampus and prefrontal cortex in memory. Current Biology
23:R764-R773. DOI: https://doi.org/10.1016/j.cub.2013.05.041, PMID: 24028960

Reber PJ, Alvarez P, Squire LR. 1997. Reaction time distributions across normal forgetting: searching for markers
of memory consolidation. Learning & Memory 4:284-290. DOI: https://doi.org/10.1101/Im.4.3.284

Richter FR, Chanales AJH, Kuhl BA. 2016. Predicting the integration of overlapping memories by decoding
mnemonic processing states during learning. Neurolmage 124:323-335. DOI: https://doi.org/10.1016/j.
neuroimage.2015.08.051, PMID: 26327243

Richter FR, Bays PM, Jeyarathnarajah P, Simons JS. 2019. Flexible updating of dynamic knowledge structures.
Scientific Reports 9:2272. DOI: https://doi.org/10.1038/s41598-019-39468-9

Ritchey M, Montchal ME, Yonelinas AP, Ranganath C. 2015. Delay-dependent contributions of medial temporal
lobe regions to episodic memory retrieval. eLife 4:e05025. DOI: https://doi.org/10.7554/eLife.05025

Schapiro AC, Kustner LV, Turk-Browne NB. 2012. Shaping of object representations in the human medial
temporal lobe based on temporal regularities. Current Biology 22:1622-1627. DOI: https://doi.org/10.1016/j.
cub.2012.06.056, PMID: 22885059

Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM. 2013. Neural representations of events
arise from temporal community structure. Nature Neuroscience 16:486-492. DOI: https://doi.org/10.1038/nn.
3331, PMID: 23416451

Schapiro AC, Gregory E, Landau B, McCloskey M, Turk-Browne NB. 2014. The necessity of the medial temporal
lobe for statistical learning. Journal of Cognitive Neuroscience 26:1736-1747. DOI: https://doi.org/10.1162/
jocn_a_00578, PMID: 24456393

Schapiro AC, Turk-Browne NB, Norman KA, Botvinick MM. 2016. Statistical learning of temporal community
structure in the hippocampus. Hippocampus 26:3-8. DOI: https://doi.org/10.1002/hipo.22523, PMID:
26332666

Schapiro AC, McDevitt EA, Rogers TT, Mednick SC, Norman KA. 2018. Human hippocampal replay during rest
prioritizes weakly learned information and predicts memory performance. Nature Communications 9:3920.
DOI: https://doi.org/10.1038/s41467-018-06213-1, PMID: 30254219

Schlichting ML, Preston AR. 2014. Memory reactivation during rest supports upcoming learning of related
content. PNAS 111:15845-15850. DOI: https://doi.org/10.1073/pnas. 1404396111

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 36 of 38


https://doi.org/10.7554/eLife.84359
https://doi.org/10.1093/cercor/bht324
http://www.ncbi.nlm.nih.gov/pubmed/24275829
https://doi.org/10.1016/S0022-5371(63)80091-2
https://doi.org/10.1016/j.cub.2015.01.033
http://www.ncbi.nlm.nih.gov/pubmed/25728693
https://doi.org/10.1523/JNEUROSCI.0394-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/33239402
https://doi.org/10.7554/eLife.22177
https://doi.org/10.1073/pnas.1912338117
https://doi.org/10.1073/pnas.1912338117
https://doi.org/10.1016/j.neuroimage.2014.09.026
https://doi.org/10.1016/j.neuroimage.2014.09.026
http://www.ncbi.nlm.nih.gov/pubmed/25241907
https://doi.org/10.1523/JNEUROSCI.4032-15.2017
https://doi.org/10.1523/JNEUROSCI.4032-15.2017
https://doi.org/10.1162/jocn_a_01321
http://www.ncbi.nlm.nih.gov/pubmed/30063181
https://doi.org/10.1002/1098-1063(2000)10:43.0.CO;2-D
https://doi.org/10.1002/1098-1063(2000)10:43.0.CO;2-D
https://doi.org/10.1002/hipo.22766
http://www.ncbi.nlm.nih.gov/pubmed/28768057
https://doi.org/10.1073/pnas.0910834107
https://doi.org/10.1073/pnas.0910834107
https://doi.org/10.1037/h0025953
http://www.ncbi.nlm.nih.gov/pubmed/5665566
https://doi.org/10.1002/hipo.20009
https://doi.org/10.1002/hipo.20009
https://doi.org/10.1016/j.cub.2013.05.041
http://www.ncbi.nlm.nih.gov/pubmed/24028960
https://doi.org/10.1101/lm.4.3.284
https://doi.org/10.1016/j.neuroimage.2015.08.051
https://doi.org/10.1016/j.neuroimage.2015.08.051
http://www.ncbi.nlm.nih.gov/pubmed/26327243
https://doi.org/10.1038/s41598-019-39468-9
https://doi.org/10.7554/eLife.05025
https://doi.org/10.1016/j.cub.2012.06.056
https://doi.org/10.1016/j.cub.2012.06.056
http://www.ncbi.nlm.nih.gov/pubmed/22885059
https://doi.org/10.1038/nn.3331
https://doi.org/10.1038/nn.3331
http://www.ncbi.nlm.nih.gov/pubmed/23416451
https://doi.org/10.1162/jocn_a_00578
https://doi.org/10.1162/jocn_a_00578
http://www.ncbi.nlm.nih.gov/pubmed/24456393
https://doi.org/10.1002/hipo.22523
http://www.ncbi.nlm.nih.gov/pubmed/26332666
https://doi.org/10.1038/s41467-018-06213-1
http://www.ncbi.nlm.nih.gov/pubmed/30254219
https://doi.org/10.1073/pnas.1404396111

e Llfe Research article

Neuroscience

Schlichting ML, Mumford JA, Preston AR. 2015. Learning-related representational changes reveal dissociable
integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications
6:8151. DOI: https://doi.org/10.1038/ncomms?151, PMID: 26303198

Schlichting ML, Preston AR. 2016. Hippocampal-medial prefrontal circuit supports memory updating during
learning and post-encoding rest. Neurobiology of Learning and Memory 134 Pt A:91-106. DOI: https://doi.
org/10.1016/j.nlm.2015.11.005, PMID: 26608407

Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal cortex represents a cognitive map of state
space. Neuron 91:1402-1412. DOI: https://doi.org/10.1016/j.neuron.2016.08.019, PMID: 27657452

Sekeres MJ, Winocur G, Moscovitch M. 2018a. The hippocampus and related neocortical structures in memory
transformation. Neuroscience Letters 680:39-53. DOI: https://doi.org/10.1016/j.neulet.2018.05.006, PMID:
29733974

Sekeres MJ, Winocur G, Moscovitch M, Anderson JAE, Pishdadian S, Martin Wojtowicz J, St-Laurent M,
McAndrews MP, Grady CL. 2018b. Changes in patterns of neural activity underlie a time-dependent
transformation of memory in rats and humans. Hippocampus 28:745-764. DOI: https://doi.org/10.1002/hipo.
23009, PMID: 29989271

Sharon T, Moscovitch M, Gilboa A. 2011. Rapid neocortical acquisition of long-term arbitrary associations
independent of the hippocampus. PNAS 108:1146-1151. DOI: https://doi.org/10.1073/pnas.1005238108

Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB,
Petkova E, Castellanos FX, Milham MP. 2009. The resting brain: unconstrained yet reliable. Cerebral Cortex
19:2209-2229. DOI: https://doi.org/10.1093/cercor/bhn256, PMID: 19221144

Spalding KN, Schlichting ML, Zeithamova D, Preston AR, Tranel D, Duff MC, Warren DE. 2018. Ventromedial
prefrontal cortex is necessary for normal associative inference and memory integration. The Journal of
Neuroscience 38:3767-3775. DOI: https://doi.org/10.1523/JNEUROSCI.2501-17.2018, PMID: 29555854

Squire LR, Cohen NJ, Nadel L. 1984. The medial temporal region and memory consolidation: A new hypothesis.
Weingartner H, Parker E (Eds). Memory Consolidation. Erlbaum. p. 185-210.

Sweegers CCG, Takashima A, Fernandez G, Talamini LM. 2014. Neural mechanisms supporting the extraction of
general knowledge across episodic memories. Neurolmage 87:138-146. DOI: https://doi.org/10.1016/j.
neuroimage.2013.10.063, PMID: 24215973

Sweegers CCG, Talamini LM. 2014. Generalization from episodic memories across time: A route for semantic
knowledge acquisition. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior 59:49-61.
DOI: https://doi.org/10.1016/j.cortex.2014.07.006, PMID: 25129237

Takashima A, Petersson KM, Rutters F, Tendolkar |, Jensen O, Zwarts MJ, McNaughton BL, Fernandez G. 2006.
Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study.
PNAS 103:756-761. DOI: https://doi.org/10.1073/pnas.0507774103

Takashima A, Nieuwenhuis ILC, Rijpkema M, Petersson KM, Jensen O, Fernandez G. 2007. Memory trace
stabilization leads to large-scale changes in the retrieval network: A functional MRI study on associative
memory. Learning & Memory 14:472-479. DOI: https://doi.org/10.1101/Im.605607

Takashima A, Nieuwenhuis ILC, Jensen O, Talamini LM, Rijpkema M, Fernandez G. 2009. Shift from hippocampal
to neocortical centered retrieval network with consolidation. The Journal of Neuroscience 29:10087-10093.
DOI: https://doi.org/10.1523/JNEUROSCI.0799-09.2009

Takehara-Nishiuchi K, McNaughton BL. 2008. Spontaneous changes of neocortical code for associative memory
during consolidation. Science 322:960-963. DOI: https://doi.org/10.1126/science. 1161299, PMID: 18988855

Tambini A, Ketz N, Davachi L. 2010. Enhanced brain correlations during rest are related to memory for recent
experiences. Neuron 65:280-290. DOI: https://doi.org/10.1016/j.neuron.2010.01.001, PMID: 20152133

Tambini A, Davachi L. 2019. Awake reactivation of prior experiences consolidates memories and biases
cognition. Trends in Cognitive Sciences 23:876-890. DOI: https://doi.org/10.1016/].tics.2019.07.008

Tambini A, D'Esposito M. 2020. Causal contribution of awake post-encoding processes to episodic memory
consolidation. Current Biology 30:3533-3543.. DOI: https://doi.org/10.1016/].cub.2020.06.063

Tompary A, Duncan K, Davachi L. 2015. Consolidation of associative and item memory is related to post-
encoding functional connectivity between the ventral tegmental area and different medial temporal lobe
subregions during an unrelated task. The Journal of Neuroscience 35:7326-7331. DOI: https://doi.org/10.
1523/JNEUROSCI.4816-14.2015, PMID: 25972163

Tompary A, Davachi L. 2017. Consolidation promotes the emergence of representational overlap in the
hippocampus and medial prefrontal cortex. Neuron 96:228-241.. DOI: https://doi.org/10.1016/j.neuron.2017.
09.005, PMID: 28957671

Tompary A, Zhou W, Davachi L. 2020. Schematic memories develop quickly, but are not expressed unless
necessary. Scientific Reports 10:16968. DOI: https://doi.org/10.1038/s41598-020-73952-x, PMID: 33046766

Tompary A, Thompson-Schill SL. 2021. Semantic influences on episodic memory distortions. Journal of
Experimental Psychology. General 150:1800-1824. DOI: https://doi.org/10.1037/xge0001017, PMID:
33475397

Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK. 2009. Neural evidence of statistical learning: Efficient
detection of visual regularities without awareness. Journal of Cognitive Neuroscience 21:1934-1945. DOI:
https://doi.org/10.1162/jocn.2009.21131

Turk-Browne NB, Simon MG, Sederberg PB. 2012. Scene representations in parahippocampal cortex depend on
temporal context. The Journal of Neuroscience 32:7202-7207. DOI: https://doi.org/10.1523/JNEUROSCI.
0942-12.2012

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 37 of 38


https://doi.org/10.7554/eLife.84359
https://doi.org/10.1038/ncomms9151
http://www.ncbi.nlm.nih.gov/pubmed/26303198
https://doi.org/10.1016/j.nlm.2015.11.005
https://doi.org/10.1016/j.nlm.2015.11.005
http://www.ncbi.nlm.nih.gov/pubmed/26608407
https://doi.org/10.1016/j.neuron.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27657452
https://doi.org/10.1016/j.neulet.2018.05.006
http://www.ncbi.nlm.nih.gov/pubmed/29733974
https://doi.org/10.1002/hipo.23009
https://doi.org/10.1002/hipo.23009
http://www.ncbi.nlm.nih.gov/pubmed/29989271
https://doi.org/10.1073/pnas.1005238108
https://doi.org/10.1093/cercor/bhn256
http://www.ncbi.nlm.nih.gov/pubmed/19221144
https://doi.org/10.1523/JNEUROSCI.2501-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29555854
https://doi.org/10.1016/j.neuroimage.2013.10.063
https://doi.org/10.1016/j.neuroimage.2013.10.063
http://www.ncbi.nlm.nih.gov/pubmed/24215973
https://doi.org/10.1016/j.cortex.2014.07.006
http://www.ncbi.nlm.nih.gov/pubmed/25129237
https://doi.org/10.1073/pnas.0507774103
https://doi.org/10.1101/lm.605607
https://doi.org/10.1523/JNEUROSCI.0799-09.2009
https://doi.org/10.1126/science.1161299
http://www.ncbi.nlm.nih.gov/pubmed/18988855
https://doi.org/10.1016/j.neuron.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20152133
https://doi.org/10.1016/j.tics.2019.07.008
https://doi.org/10.1016/j.cub.2020.06.063
https://doi.org/10.1523/JNEUROSCI.4816-14.2015
https://doi.org/10.1523/JNEUROSCI.4816-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25972163
https://doi.org/10.1016/j.neuron.2017.09.005
https://doi.org/10.1016/j.neuron.2017.09.005
http://www.ncbi.nlm.nih.gov/pubmed/28957671
https://doi.org/10.1038/s41598-020-73952-x
http://www.ncbi.nlm.nih.gov/pubmed/33046766
https://doi.org/10.1037/xge0001017
http://www.ncbi.nlm.nih.gov/pubmed/33475397
https://doi.org/10.1162/jocn.2009.21131
https://doi.org/10.1523/JNEUROSCI.0942-12.2012
https://doi.org/10.1523/JNEUROSCI.0942-12.2012

e Llfe Research article

Neuroscience

van Kesteren MTR, Fernandez G, Norris DG, Hermans EJ. 2010. Persistent schema-dependent hippocampal-
neocortical connectivity during memory encoding and postencoding rest in humans. PNAS 107:7550-7555.
DOI: https://doi.org/10.1073/pnas.0914892107

Vilberg KL, Davachi L. 2013. Perirhinal-hippocampal connectivity during reactivation is a marker for object-based
memory consolidation. Neuron 79:1232-1242. DOI: https://doi.org/10.1016/j.neuron.2013.07.013, PMID:
23993700

Wagner U, Gais S, Haider H, Verleger R, Born J. 2004. Sleep inspires insight. Nature 427:352-355. DOI: https://
doi.org/10.1038/nature02223, PMID: 14737168

Wahlheim CN, Zacks JM. 2019. Memory guides the processing of event changes for older and younger adults.
Journal of Experimental Psychology. General 148:30-50. DOI: https://doi.org/10.1037/xge0000458, PMID:
29985021

Warren DE, Jones SH, Duff MC, Tranel D. 2014. False recall is reduced by damage to the ventromedial prefrontal
cortex: implications for understanding the neural correlates of schematic memory. The Journal of Neuroscience
34:7677-7682. DOI: https://doi.org/10.1523/JNEUROSCI.0119-14.2014, PMID: 24872571

Werchan DM, Gémez RL. 2013. Generalizing memories over time: sleep and reinforcement facilitate transitive
inference. Neurobiology of Learning and Memory 100:70-76. DOI: https://doi.org/10.1016/j.nlm.2012.12.006,
PMID: 23257278

Wing EA, Geib BR, Wang WC, Monge Z, Davis SW, Cabeza R. 2020. Cortical overlap and cortical-hippocampal
interactions predict subsequent true and false memory. The Journal of Neuroscience 40:1920-1930. DOI:
https://doi.org/10.1523/JNEUROSCI.1766-19.2020, PMID: 31974208

Winocur G, Moscovitch M, Bontempi B. 2010. Memory formation and long-term retention in humans and
animals: Convergence towards a transformation account of hippocampal-neocortical interactions.
Neuropsychologia 48:2339-2356. DOI: https://doi.org/10.1016/j.neuropsychologia.2010.04.016

Woodard JL, Seidenberg M, Nielson KA, Miller SK, Franczak M, Antuono P, Douville KL, Rao SM. 2007.
Temporally graded activation of neocortical regions in response to memories of different ages. Journal of
Cognitive Neuroscience 19:1113-1124. DOI: https://doi.org/10.1162/jocn.2007.19.7.1113, PMID: 17583988

Ye Z, Shi L, Li A, Chen C, Xue G. 2020. Retrieval practice facilitates memory updating by enhancing and
differentiating medial prefrontal cortex representations. eLife 9:€57023. DOI: https://doi.org/10.7554/¢elife.
57023

Yim H, Savic O, Sloutsky VM, Dennis SJ. 2019. Can paradigmatic relations be learned implicitly. [Proceedings of
the 41st Annual Conference of the Cognitive Science Society].

Zeithamova D, Dominick AL, Preston AR. 2012. Hippocampal and ventral medial prefrontal activation during
retrieval-mediated learning supports novel inference. Neuron 75:168-179. DOI: https://doi.org/10.1016/].
neuron.2012.05.010, PMID: 22794270

Zeng T, Tompary A, Schapiro AC, Thompson-Schill SL. 2021. Tracking the relation between gist and item
memory over the course of long-term memory consolidation. eLife 10:e65588. DOI: https://doi.org/10.7554/
elife.65588

Zhang J, Mueller ST. 2005. A note on ROC analysis and non-parametric estimate of sensitivity. Psychometrika
70:203-212. DOI: https://doi.org/10.1007/s11336-003-1119-8

Tompary and Davachi. eLife 2024;0:e84359. DOI: https://doi.org/10.7554/eLife.84359 38 of 38


https://doi.org/10.7554/eLife.84359
https://doi.org/10.1073/pnas.0914892107
https://doi.org/10.1016/j.neuron.2013.07.013
http://www.ncbi.nlm.nih.gov/pubmed/23993700
https://doi.org/10.1038/nature02223
https://doi.org/10.1038/nature02223
http://www.ncbi.nlm.nih.gov/pubmed/14737168
https://doi.org/10.1037/xge0000458
http://www.ncbi.nlm.nih.gov/pubmed/29985021
https://doi.org/10.1523/JNEUROSCI.0119-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/24872571
https://doi.org/10.1016/j.nlm.2012.12.006
http://www.ncbi.nlm.nih.gov/pubmed/23257278
https://doi.org/10.1523/JNEUROSCI.1766-19.2020
http://www.ncbi.nlm.nih.gov/pubmed/31974208
https://doi.org/10.1016/j.neuropsychologia.2010.04.016
https://doi.org/10.1162/jocn.2007.19.7.1113
http://www.ncbi.nlm.nih.gov/pubmed/17583988
https://doi.org/10.7554/eLife.57023
https://doi.org/10.7554/eLife.57023
https://doi.org/10.1016/j.neuron.2012.05.010
https://doi.org/10.1016/j.neuron.2012.05.010
http://www.ncbi.nlm.nih.gov/pubmed/22794270
https://doi.org/10.7554/eLife.65588
https://doi.org/10.7554/eLife.65588
https://doi.org/10.1007/s11336-003-1119-8

	Integration of overlapping sequences emerges with consolidation through medial prefrontal cortex neural ensembles and hippocampal–cortical connectivity
	Editor's evaluation
	Introduction
	Integration and cortical similarity
	Integration and hippocampal–cortical coupling
	Integration of sequential regularities

	Results
	Learning
	Experiment 1
	Experiment 2

	Recognition
	Experiment 1
	Experiment 2

	Explicit integration
	Experiment 1
	Experiment 2

	Experiment 2: pattern similarity
	Learning-related and time-dependent changes in similarity
	Relationship between mPFC similarity and priming
	Control analyses
	Changes in similarity in other regions
	AB integration and similarity

	Experiment 2: resting-state connectivity
	Learning-related changes in rest connectivity
	Relationship between rest connectivity and priming
	Accounting for same- versus across-session change scores

	Experiment 2: relationship between neural integration and rest connectivity
	Relationship between similarity and rest
	Neural measures related to priming


	Discussion
	Integration of overlapping regularities
	Cortical and hippocampal similarity
	Post-encoding rest connectivity
	Future directions, caveats, and conclusion

	Materials and methods
	Experiment 1
	Subjects
	Stimuli
	Experiment procedure
	Sequence learning task
	Recognition priming task
	Explicit memory task
	Unreported tasks
	Statistical analyses

	Experiment 2
	Subjects
	Procedure
	Explicit memory task
	Pre- and post-learning snapshots
	Resting-state scans
	fMRI parameters
	Preprocessing
	Pre- and post-learning pattern similarity
	Resting-state connectivity
	Regions of interest
	Statistical tests


	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


