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Abstract

One goal of cognitive science is to build theories of mental
function that predict individual behavior. In this project we
focus on predicting, for individual participants, which specific
items in a list will be remembered at some point in the future.
If you want to know if an individual will remember something,
one commonsense approach is to give them a quiz or test such
that a correct answer likely indicates later memory for an item.
In this project we attempt to predict later memory without ex-
plicit assessments by jointly modeling both neural and behav-
ioral data in a computational cognitive model which captures
the dynamics of memory acquisition and decay. In this paper,
we lay out a novel hierarchical Bayesian approach for com-
bining neural and behavioral data and present results showing
how fMRI signals recorded during the study phase of a mem-
ory task can improve our ability to predict (in held-out data)
which items will be remembered or forgotten 72 hours later.
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Introduction
A number of approaches in cognitive science and education
attempt to use computer models to algorithmically tailor in-
formation presentation during study to the needs of individual
learners (Smallwood, 1962; Atkinson, 1972; Fu et al., 2006;
Ritter, Anderson, Koedinger, & Corbett, 2007; Pavlik & An-
derson, 2008; Lindsey, Mozer, Cepeda, & Pashler, 2009; Raf-
ferty, LaMar, & Griffiths, 2015). A core goal of these ap-
proaches is to leverage insights about the dynamics of learn-
ing and memory in order to predict which materials are likely
to be forgotten and which will be remembered at future points
in time.

Most of these approaches adapt their recommendations
to individuals based primarily on assessments (e.g., perfor-
mance on quizzes and tests given during or after a learning
session)(Atkinson, 1972; Corbett & Anderson, 1995; Kha-
jah, V. Lindsey, & Mozer, 2016). In this paper we attempt
to predict an individual’s memory (specifically which items
will be remembered and which will be forgotten after a de-
lay) without using explicit assessments. Our approach builds
on research in cognitive neuroscience which has identified
several neuroimaging correlates of successful memory forma-
tion (Davachi, 2006). We use functional magnetic resonance
imaging (fMRI) to “peer into the minds” of learners while
they study and to use the resulting information to improve
predictions about their memory tested at a multi-day delay.

We begin by laying out a novel Hidden Markov Model
(HMM, Rabiner, 1989) of memory which can learn to utilize
fMRI signals as helpful indicators about the mnemonic status
{remembered, forgotten} of individual memory traces. We
then compare the predictive ability of this model to a number
of simpler alternatives which lack access to the neural infor-
mation but which incorporate other information about indi-

viduals such as their own self-reported judgements of learn-
ing (JOLs)(Nelson & Dulosky, 1991). To foreshadow, we find
that the model utilizing fMRI signals recorded from individu-
als while they learned allowed us to predict which items they
would remember better than alternative approaches which uti-
lized explicit assessments. The success of this approach al-
lows us to determine, without directly asking or testing partic-
ipants, whether an experienced event is likely to be forgotten
in the future and therefore deserving of additional practice.

Prior work on predicting human learning and
memory
Atkinson (1972) sought to optimize the acquisition of a for-
eign language vocabulary using a Markov model of memory
which algorithmically chose the sequence of words partic-
ipants should study on each trial (Atkinson, 1972). In the
critical test of the model, word-pairs were selected for study
either randomly, by participants themselves, or using the fit-
ted model.

The model-based approach assumed that each individ-
ual memory trace – memory for the association between
words in a pair – could be in one of three mutually exclu-
sive latent states S = {sU ,sT ,sP} representing (U)nknown,
(T)emporarily stored, and (P)ermanently stored memories,
respectively. Each time a word was studied there was a prob-
ability the memory trace would transition to the more fully
learned T or P states according to the study transitions matrix
shown in Figure 1. Alternatively, on trials when a word was
not studied (e.g., another word was studied) there was a pos-
sibility of forgetting (i.e., moving from T to U) as reflected
in the decay transitions. Every time an item was presented to
the learner in the computer-aided condition, the model prob-
abilistically updated a posterior probability estimate of the
state of each memory trace according to the transition proba-
bilities. In this way, the model used the history and dynamics
of a trace (e.g., how long ago it was last studied, how many
times it has been studied, etc.) to make a prediction about the
status of a memory at any point in time.

The critical insight from Atkinson is that an explicit model
of the dynamics of a memory trace can be exploited by
an adaptive computer algorithm to predict human learning.
This influential finding inspired a line of work that has uti-
lized Bayesian Knowledge Tracing (BKT) to adapt instruc-
tion to individual learners (Corbett & Anderson, 1995) and
generated a range of subsequent papers and modeling at-
tempts (Pavlik & Anderson, 2008; Lindsey et al., 2009; Kha-
jah, Lindsey, & Mozer, 2014).

Although these models show promise, they have several
limitations. In particular, there is usually no information
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Figure 1: Structure of Atkinson’s (1972) three state Markov model
showing latent memory states, the allowable transitions between
them during learning and forgetting, and the parameters governing
the state transitions.

about the knowledge or memory status of some material un-
til the learner completes an explicit assessment (e.g., test or
metacognitive rating of learning). However, it has long been
recognized that repeated assessments interrupt the learning
context and may alter the nature of memory in consequen-
tial ways (Anderson, Bjork, & Bjork, 1994). In addition,
the focus on explicit assessments runs the risk of ignoring
other useful forms of information bearing on the underlying
knowledge state of individuals (Anderson, Betts, Ferris, &
Fincham, 2010; Anderson, 2012; Turner et al., 2013).

Signals of memory formation in the brain
Following pioneering clinical and animal research (Scoville
& Milner, 1957; Mishkin, 1978) it is now common consensus
that there are regions in the brain which are critically involved
in memory acquisition. One important finding is that neu-
roimaging signals recorded during study episodes differ ac-
cording to whether those episodes are later remembered com-
pared to those that are forgotten (Paller & Wagner, 2002), a
phenomenon known as the subsequent memory effect (SME).
Of particular interest in the context of this paper is the fact
that these differences are, on average, measurable at the time
of the to-be-remembered experience, suggesting that the fu-
ture memory status of individual episodes could be predicted
from the brain response to a single trial. That is, rather than
retroactively using later memory performance to identify the
neural patterns predicting that performance, we hope to use
these signals in a prospective fashion to predict the probabil-
ity that events have been encoded successfully into memory.

A neuro-cognitive model of memory
Drawing inspiration from both the BKT and the subsequent
memory literatures we propose a neurally-informed HMM of
paired-associate memory. As a starting point, we adopt the
three-state model introduced by Atkinson (1972) and extend
it to include observable emissions (i.e., observable data re-
flective of the hidden states). Although highly schematized,
this model provides a characterization of memory traces in
terms of latent states and the dynamics of moving through
those states over time and can be used to make predictions
about future memory performance. A particular strength of

this approach is flexibility in incorporating diverse kinds of
observable emissions (Rabiner, 1989). Here we focus on
BOLD signals measured with fMRI (as well as metacognitive
judgments in the form of JOLs) because such signals have, in
past work, been been related to future memory performance
but the framework could readily incorporate other observa-
tions bearing on memory status (e.g., EEG, eye movements).

Our goal of combining neuroimaging data with a cogni-
tive model is part of a broader recent initiative to find ways
to link behavioral and neural data together with hypotheses
about cognitive processes (Hawkins, Mittner, Forstmann, &
Heathcote, 2017; Turner et al., 2013; Anderson et al., 2010;
Anderson, 2012; Anderson, Pyke, & Fincham, 2016; Turner,
Rodriguez, Norcia, McClure, & Steyvers, 2016; Turner,
Forstmann, Love, Palmeri, & Maanen, 2016). Although the
research topics in these reports are diverse, they share the per-
spective that neural data can provide useful information about
latent states or cognitive processes beyond that available from
behavior alone and that the constraining influence of jointly
modeling neural and behavioral data enables more accurate
description of cognition.

Structure of the model
We assume that a learner studies a list of N word pairs or
pair-wise associations. We characterize each memory trace
(i.e., each word pair) as a HMM with the structure shown in
Figure 1. For computational reasons, we assume that indi-
vidual memory traces are independent but in future work this
assumption can be easily relaxed to model inter-item interac-
tions.

The core of each HMM is the set of discrete latent memory
states S = {sU ,sT ,sP}; a prior, Πt=0, over the initial states
(before study) for each word pair; the transition probabili-
ties, T , which determine the probability of a trace moving
between the different states at each point in time as set by the
parameters x, y, z, and f (Figure 1A); and the emission dis-
tributions, E, defining the probability of observing data (be-
havioral or physiological) given a latent mental state and an
external event eliciting an observable signal.

We propose two sets of transition probabilities (Figure 1),
the application of which depends on the type of event, et =
{study,decay,test}, occurring at time t for a particular word
pair. If, at time t, word pair i is presented for study, the study
transitions are applied, increasing the probability that the la-
tent trace for pair i has moved into an accessible memory
state. At timesteps when item i is not presented for study
(e.g., another item is studied), the decay transitions are used,
reflecting the possibility that learned items might fall back
into the U state. The event type occurring at t also defines
whether and which observable emissions can be expected.
As in BKT, a behavioral response on a test event is an emis-
sion whose likelihood is dependent on the underlying state
(P[correct response|q = s]). Similarly, presenting an item for
study while a person is undergoing fMRI scanning results in
an observed BOLD signal that may be related to later mem-
ory performance (which in turn is assumed to depend on the



latent memory state of the item).
Given a model and a protocol R specifying the order of

events for a particular participant (e.g., the order of words
studied and the time between presentations) we can infer, at
any point in the study sequence, the most likely mnemonic
status for each word pair. The posterior probability of each
state for a particular word pair at time t can be obtained by
Bayes’ rule:

p[qt = s′|ot ,et = g,qt−1 = s] =
bg,s′

t ag,s→s′
t πs

t−1

∑k bg,sk
t ag,s→sk

t πs
t−1

(1)

The likelihood of observed data for a memory trace at time
t conditional on event type g and a particular latent state s is
given by bg,s

t = P[ot |et = g,qt = s]. Some state-event combi-
nation are “silent” in the sense that if, for example, word pair
j is presented for study there my be no observable behavior or
other signal that bears on the status of item i. The transition
probabilities for an item moving from state s to s′ given event
g – which determines the transition functions to be used – are
represented as ag,s→s′

t , and πs
t−1 encodes the prior distribution

over states for an item as provided by the initial state prior or
the previous time step. When there are no observable emis-
sions this reduces to application of the appropriate transition
matrix to the posterior over states from the last time step.

Memory task - behavioral
The behavior that we seek to predict is performance on
a cued-recall memory test for a set of Lithuanian-English
word pairs. Participants’ task is to study the word pairs
and then, given a Lithuanian word, recall the associated En-
glish word. Starting with a normed set of Lithuanian-English
words (Grimaldi, Pyc, & Rawson, 2010), we selected 45 word
pairs to be learned. During study, participants see the pairs
presented one at a time for 4 seconds each with a variable du-
ration ITI (4s-16s) between trials (for consistency with event-
related MRI timing). Each word pair is presented five times
and no pair is presented for the nth repetition until all words
have n−1 presentations. Importantly, and in contrast to many
studies, all participants see the same sequence of study items.
Although the model we use is simple and doesn’t explicitly
model factors like inter-item interactions during study, keep-
ing a fixed protocol across people ensures that some of these
effects will be captured in the acquisition and forgetting pa-
rameters we estimate.

Immediately following the study session participants give
judgments of learning (JOLs): for each pair, participants use
the mouse to indicate on a scale of 0-100 how likely they
think they are to remember the association. Participants then
return to the lab for a recall test either 24h, 72h or 168h (1
week) after the initial study session. During the recall test,
participants are given a cued recall task in which they see a
Lithuanian word presented on the screen and have up to 12
seconds to type in the associated English word. Recall per-
formance for each trial was considered correct if participants

typed the correct English word and all other responses were
considered failures of recall.

Due to the high cost of fMRI data acquisition we took the
approach of collecting a large behavioral dataset outside of
the MRI scanner and combined those data with additional
observations from participants who performed the same task
during MRI scanning (under this view all participants are
equally useful but purely behavioral subjects are treated as
through their fMRI data are ”missing”). Each behavioral par-
ticipant (N=150) was tested at one of the three study-test de-
lays. Including participants at each of three delays provides
help in estimating the forgetting rate for each word in a way
that allows separation between the T and P states. Both states
are associated with successful recall, so including multiple
delays allows us to separate those memory traces that are
more likely to be recalled at shorter delays than longer delays
(T state at end of study session) from those that are likely to
be recalled at all delays (more likely to be P state traces).

Memory task - MRI
MRI participants (N=20) underwent the same study-test pro-
cedure except they were scanned during the study session and
all MRI participants were tested at the 72h delay. MRI data
were collected on a Siemens Prisma 3T. Functional data cov-
ering the cortex were acquired at 2.5 mm3 with a 1 second
TR (multi band factor 4) and anatomical scans were acquired
at 1mm3.

Identifying fMRI emissions
After standard MRI preprocessing (Danker, Tompary, &
Davachi, 2017), we selected data for inclusion in the model.
We reduced the dimensionality of the fMRI data using group
spatial independent components analysis (ICA) using the
ICASSO algorithm as implemented in the GIFT ICA toolbox
(http://mialab.mrn.org/software/gift/) (Calhoun, Adali, Pearl-
son, & Pekar, 2001; Van Maanen et al., 2011). This proce-
dure, which is blind to trial information, results in a set of 60
independent components that are characterized by a particular
spatial and temporal profile for each participant. Components
that were unstable across estimations (ICASSO) and compo-
nents associated with signal from ventricles or motion were
discarded leaving 43 independent components for inclusion
as model features. Individual trial activations were summa-
rized as the mean of of timepoints encompassing 4-6 seconds
post-stimulus onset (to account for the temporal lag in the
BOLD response), giving us one activation value for each trial
in each component for each MRI participant.

Predicting behavior
To assess whether our proposed model can accurately predict
performance in the task we fit three variants: a model fit to
trial timing and recall performance (the binary recall success
scores for each word) (Recall); a model fit to trial timing,
recall performance, and JOL emissions (Recall+JOL); and a
model fit to trial timing, recall performance, and fMRI emis-
sions (Recall+MRI). In each case the training data included



data from all of the behavioral data and a subset of the MRI
participant data (see Model evaluation below).

The parameters to be estimated for all three models are the
x, y, and z values controlling transitions between states during
study opportunities and the f parameter determining forget-
ting rates (Figure 1). In the Recall+JOL and Recall+MRI
models we also estimate the parameters for distributions of
emission likelihoods (i.e., probability of fMRI signal or JOL
ratings conditioned on the latent states of an item).

For all words we set the initial state priors, πs
0, at

[0.99,0.005,0.005] for U , T , and P, respectively, as none of
the participants in our study had prior experience with Lithua-
nian. We also fixed the probabilities of giving the correct be-
havioral response as [.01, .9, .9] for latent memory states U ,
T , and P. This reflects the assumption that it is very unlikely
that one would guess the correct answer in a cued recall test
without any memory (s = U) and that, as in Atkinson, the pri-
mary difference between T and P states is the susceptibility
to decay over time rather than the availability of a memory to
recall (via the influence of the f parameter).

To get better estimates of the parameters, we used a hier-
archical Bayesian model that used group-level priors over the
parameters to regularize the estimates. Each xw was drawn
from a Logit-Normal(x, σx) where x itself was drawn from a
Normal(0, 6) and σx was drawn from a Truncated-Normal(0,
1). The model for the fw parameters was exactly the same.
The simplices zyw were generated using the following pro-
cedure: z and y were drawn from a Normal(0, 6). zw and
yw were drawn from Normal(z, σz) and Normal(y, sigmay)
respectively with σz and σy both drawn from a Truncated-
Normal(0, 1). Finally, zyw was set to so f tmax([0,zw,yw[).
This can be thought of as a multivariate generalization of the
Logit-Normal with a diagonal covariance matrix.

In the models incorporating JOLs or MRI data we also
estimated the mean and variance parameters for the Gaus-
sian (truncated for JOLs) emission likelihood from each la-
tent state. As with the transition parameters, the individual
MRI components were treated as independent observations
but the emission likelihood priors were hierarchical.

For estimation in this model, we used MCMC sampling via
the NUTS algorithm as implemented in STAN to estimate the
posterior over the parameters (4 chains of 200 iterations; 100
per chain discarded as burnin; 400 total samples per param-
eter). HMM models like this can be difficult to sample since
parameters can be highly correlated and getting 200 samples
for the fMRI models took 12-36 hours of compute time per
model per fold. While hierarchical parameters were some-
times noisily estimated, to ensure convergence, we checked
that estimates of the probability of recall had low R̂ values
(Stan Development Team, 2016).

Model evaluation In order to compare models, we want to
know how well our models will predict new, unseen data. A
common metric of model fit in cognitive science is the log
likelihood of the data. Many approximation methods have
been proposed for computing the expected log likelihood of

new data such as AIC (Akaike, 1974) and WAIC (Watanabe,
2010). However, it is generally agreed that the generalization
method with the fewest assumptions is K-fold cross valida-
tion and this is preferred when sufficient data and compu-
tational resources are available (Vehtari, Gelman, & Gabry,
2017). Our goal is to assess the utility of incorporating MRI
signals into a memory model so we use K-fold cross valida-
tion where the folds were defined over the 20 fMRI subjects.
We divided up the data from these subjects into ten equally
sized folds. We then trained ten versions of each of the three
model types where the training set consisted of all of the data
from behavior-only subjects and nine of the ten folds of the
fMRI subjects. On the held-out test set, we used the identity
of the words and the trial timings (and JOL or fMRI observa-
tions, where appropriate) to generate the posterior probability
of recall for each held out word at the time of test.

In addition, we evaluated a ”baseline” fMRI model that
predicted recall using just fMRI activations without the con-
tributions of the three-state cognitive model. These fMRI-
baseline predictions were generated by training an L2 regu-
larized logistic regression model using the same cross vali-
dation regime as described above. The predictors were the
fMRI activations measured on each study trial in each of the
independent components used in the three-state model and
the output was the probability of recall in the test sets.

As we are primarily interested in our ability to classify a
new piece of data as successfully recalled or not rather than
the log likelihood of the trial under the model, we adopted
a cross-validated area under the ROC curve metric (ROC-
AUC). The ROC-AUC can be interpreted somewhat like an
accuracy measure where 0.5 represents chance prediction and
higher values indicate better predictive performance of the
model. Using ROC-AUC allows us to compare the held-out
predictive performance of models with varying numbers of
parameters while providing a metric of model performance
that is relatively insensitive to class imbalance and does not
prioritize one kind of error over another (e.g., trading off Hits
versus Misses). The model ROCs were defined by calculat-
ing, in each cross validation fold, the proportion of predicted
as remembered trials that were recalled correctly (Hits) and
the proportion of predicted as remembered trials that were
not (False Alarms) at each level of posterior recall probabil-
ity given by the model.

Results
The Recall model, which is trained and evaluated using the
timing of study and test trials and the observed recall perfor-
mance, demonstrated above chance prediction performance
in each of the cross validation folds (Figure 2, mean across
fold AUC=0.64; sem=0.02). This result, consistent with prior
work, establishes the ability of the structure of our three state
model to predict memory performance given only the trial
timings and identity of held-out word pairs.

The Recall+JOL model, which adds judgments of learn-
ing to the Recall model, improved our held-out prediction,
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Figure 2: ROC curves for held-out predictions in each model vari-
ant. The curves show the mean ± sem across each of the cross vali-
dation folds.

achieving a mean held out ROC-AUC of 0.73 (±0.01), in-
dicating that although knowing the basic information used in
the Recall model (trial timing, recall accuracy for each word)
is useful, additional observations in the form of JOLs can be
used to refine predictions about held-out performance.

We next assessed whether we could use fMRI signals to
make accurate predictions on held out trials. We trained the
Recall+MRI model using the piecds in the Recall model and
added fMRI observations for each MRI participants’ study
trials. The training set included the trial-level activations in
each of forty-three independent components. The held out
data included the trial timings for the held out word pairs
as well as the study trial MRI observations from each of
the components. This model achieved a mean ROC-AUC
across folds for held out trials of 0.75 (±0.01). This result
demonstrates that once trained, our model can predict trial-
level memory performance given only the identity of a word
pair, the timing of trials, and fMRI signal from study events
and that this predictive accuracy surpasses that provided by
the Recall and Recall+JOL models.

We also examined whether the fMRI data alone, without
the structure provided by the models, could be used for pre-
diction. The result of this analysis was a mean held-out ROC-
AUC of 0.60 (±0.05) in the fMRI-baseline logistic regression
model, indicating a benefit of joint cognitive and fMRI mod-
eling relative to fMRI data alone.

Examining emission likelihoods
The Recall+MRI model included activation from a number
of independent components as neural features. After estimat-
ing the emission parameters we can assess which components
provided information about the latent model states. Used in
this way, the joint model can be used as a tool for a richer un-
derstanding of how complex cognitive dynamics, especially
those that might not be apparent in a more conventional anal-
ysis (e.g., a traditional subsequent memory analysis that only
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Figure 3: Topography and posterior predictive distributions for
MRI emissions from most informative component. Individual traces
show the distributions for each fold of the cross validation.

considers activation at the time of study and performance
at the time of test), are instantiated in the brain. Figure 3
shows the voxel loadings and posterior predictive distribu-
tions for component activation conditioned on model state for
the most informative component in our model. This compo-
nent, associated primarily lateral occipital and fusiform gyrus
regions involved in processing complex visual inputs, showed
stronger activation for items in the T or P states relative to U.

Discussion
This paper introduced a neuro-cognitive model of memory
that jointly models both brain and behavior within a single
hierarchical Bayesian framework. Building off the three state
model of memory developed by Atkinson (1972), we de-
signed a discrete Hidden Markov Model of memory capable
of learning to incorporate informative fMRI (or other) sig-
nals. The model is part of a growing movement towards joint
modeling of brain and cognition (Turner et al., 2013; Ander-
son, Fincham, Schneider, & Yang, 2012). The advantage of
this approach is that information from the the brain can help
to constrain inferences about behavior, while inferences about
behavior can help to constrain the interpretation of brain sig-
nals.

Although this work is preliminary and based on a relatively
small number of fMRI subjects (N=20) exposed to a fixed
trial sequence, we were able to make above-chance predic-
tions on held out recall performance using only the timing
and identity of individual study trials (Recall model). Incor-
porating observations in the form of individual metacognitive
judgments of learning (JOLs) or MRI signal recorded during
the study session led to improved predictions, with the Re-
call+MRI model achieving the best held out prediction per-
formance.

Besides showing a framework for integrating cognition and
brain measures in a single model, the predictions from our
model can easily be incorporated into assistive learning tech-
nology (e.g., automated tutors). The estimated probability
that a learner will remember some material can be used within
optimization frameworks to design an optimal schedule of
practice (Atkinson, 1972; Pavlik & Anderson, 2008; Raf-
ferty et al., 2015). One advantage of using our approach is
that we can identify the probability of future remembrances



without interrupting the learning process to perform explicit
assessments. In addition, although our model summarizes a
number of memory phenomena in a fairly abstracted discrete
state model, it is possible to examine the posterior parameter
estimates for the neural emissions to begin understanding the
neural contributions to a dynamic, hidden set of latent cogni-
tive processes.
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