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SUMMARY

Structured knowledge is thought to form, in part,
through the extraction and representation of regular-
ities across overlapping experiences. However, little
is known about how consolidation processes may
transform novel episodic memories to reflect such
regularities. In a multi-day fMRI study, participants
encoded trial-unique associations that shared fea-
tures with other trials. Multi-variate pattern analyses
were used to measure neural similarity across over-
lapping and non-overlapping memories during im-
mediate and 1-week retrieval of these associations.
We found that neural patterns in the hippocampus
andmedial prefrontal cortex represented the featural
overlap across memories, but only after a week.
Furthermore, after a week, the strength of a memo-
ry’s unique episodic reinstatement during retrieval
was inversely related to its representation of overlap,
suggesting a trade-off between the integration of
related memories and recovery of episodic details.
These findings suggest that consolidation-related
changes in neural representations support the
gradual organization of discrete episodes into struc-
tured knowledge.

INTRODUCTION

Our semantic knowledge is a highly structured network of asso-

ciations that are, at least in some part, learned through the

extraction and consolidation of common features across many

episodic experiences. However, our understanding of how

memories of discrete episodic events are transformed into struc-

tured information over time is crude at best. From a neuroscien-

tific perspective, successful episodicmemory retrieval is thought

to be initially supported by the hippocampus, but then may

gradually be supported by distributed cortical regions through

incremental, coordinated reactivation of memories across the

hippocampus and cortex (Alvarez and Squire, 1994; Nadel
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et al., 2000). Evidence for such a mechanism has been explored

in rodent replay studies (Pavlides and Winson, 1989; Wilson and

McNaughton, 1994) and in human neuroimaging research, by

measuring how changes in resting-state connectivity after new

learning relate to later memory (Tambini et al., 2010; Tambini

and Davachi, 2013; Schlichting and Preston, 2014; Tompary

et al., 2015). Such hippocampal-cortical dialog has been hypoth-

esized to enable the slow extraction of statistical regularities

common across overlapping episodic events (McClelland

et al., 1995). However, how this process transforms the neural

traces of episodic memories over the course of consolidation re-

mains unknown.

Behavioral research in rodents and in humans provides

compelling evidence that the structure of episodic memories

changes with time. In a recent experiment, rodents learned a

set of platform locations that were sampled from a predeter-

mined distribution of locations. After 1 day, the animals tended

to navigate to specific platform locations, but after 30 days, their

swim patterns more closely matched the underlying probability

distribution of all platform locations (Richards et al., 2014). Prior

work has also shown that rodents begin to generalize context-

specific behaviors to novel environments with time (Wiltgen

and Silva, 2007). These findings suggest that recent memories

are composed of distinct episodes, but remote memories

become transformed and integrated into more generalized rep-

resentations of related information. In humans, behavioral work

has shown that rule acquisition and use is more evident with a

temporal delay (Sweegers and Talamini, 2014). Similarly, other

work suggests that sleep enhances transitive inference behavior

(Ellenbogen et al., 2007; Lau et al., 2010) and benefits the extrac-

tion and generalization of statistical regularities across motor

and acoustic patterns (Wagner et al., 2004; Durrant et al.,

2011, 2013; Batterink and Paller, 2017). However, few studies

to date have shed light on how the underlying neural representa-

tions of memories with shared features are transformed over

time. In the present study, we examined whether neural repre-

sentations of memories with overlapping features become

more similar after a period of consolidation.

There is evidence that the medial prefrontal cortex (mPFC)

likely plays an important role in the transformation of episodic

memories over time, given its established involvement in

two distinct mnemonic processes: retrieval of consolidated
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memories and encoding- or retrieval-mediated integration. First,

increased mPFC activation has been associated with retrieval

of remote memories (Sterpenich et al., 2009; Takashima et al.,

2006) and retrieval of memories stabilized through sleep or

spaced learning (Sterpenich et al., 2007; Takashima et al.,

2007). Furthermore, multivariate patterns of activity in mPFC

have been shown to be more discriminable for remote

autobiographical memories than for recent memories (Bonnici

et al., 2012).

However, an entirely distinct line of work has implicated the

mPFC in tasks that require or explicitly instruct the online integra-

tion of information with shared content. Activation of the mPFC

and its connectivity with the hippocampus increases when en-

coding episodes containing stimuli that overlap with recently

learned trials (Kuhl et al., 2010; Zeithamova et al., 2012; Schlicht-

ing and Preston, 2016). Activation of mPFC is also related to

retrieval-mediated integration and updating of existing mem-

ories both in humans and rodents (Tse et al., 2007, 2011; Zeitha-

mova and Preston, 2010). Furthermore, increased hippocampal-

mPFC connectivity has been observed during the retrieval of

memories with regularities across episodes (Sweegers et al.,

2014). Taken together, these results provide converging evi-

dence that mPFC involvement in retrieval is modulated both by

the age of the memory and the necessity of integration compu-

tations during learning (Preston and Eichenbaum, 2013). How-

ever, little work has examined how consolidation may promote

such restructuring of overlapping memories in mPFC over time.

How hippocampal memory representations change over the

course of consolidation is more contentious. Relational memory

theory proposes that the hippocampus is uniquely equipped to

encode and represent information with relational links (Cohen

and Eichenbaum, 1993; Eichenbaum, 1999). Consistent with

this theory, a large bodyof neuropsychological and neuroimaging

work has implicated hippocampal processes in the encoding of

associations across unique features of an experience (Ryan

et al., 2000;Davachi et al., 2003;Ranganath et al., 2004;Staresina

andDavachi,2006, 2008; seeDavachi, 2006 for a review). Further-

more, hippocampal activation during new learning appears to

relate to the later integration of overlapping events (Shohamy

and Wagner, 2008; Zeithamova and Preston, 2010; Kuhl et al.,

2010; Schlichting et al., 2014; Schlichting and Preston, 2016).

But these findings may simply be an extension of the role of hip-

pocampal processes in supporting the initial formationof episodic

memories. In otherwords, the reactivation of oldermemories dur-

ing new learning may create a new, integrated memory trace

through the same associative binding processes that are thought

to support new episodic associative encoding. But it is unclear

whether and how those overlapping associations are stored and

represented in the hippocampus as part of an enduring memory

trace, and how they might change with consolidation.

Furthermore, theoretically, the development of hippocampal

relational nodes is not easily reconciled with complementary

learning systems (CLS) theory, in which the proposed role of hip-

pocampus is to store detailed, orthogonalized episodic mem-

ories, from which relational information is slowly extracted and

represented in cortical regions (McClelland et al., 1995). Accord-

ing to CLS, memories rich in episodic or contextual details

continue to be reinstated in the hippocampus, while schematic
and generalized information come to be represented in cortical

regions (Frankland and Bontempi, 2005; Nadel and Moscovitch,

1997; Winocur et al., 2010). Consistent with the notion that hip-

pocampal representations maintain episodic specificity, recent

imaging studies have shown that multivariate representations

of specific memories are reinstated in the hippocampus during

successful remembering (Tompary et al., 2016; Mack and Pres-

ton, 2016).With respect to univariate activation, somework high-

lights that hippocampal activation during retrieval decreases

with the age of the memory (Takashima et al., 2006, 2009; Wata-

nabe et al., 2012). At the same time, other work demonstrates

that hippocampal activation is related to remote retrieval for

memories that retain distinct episodic elements (Viard et al.,

2007; Harand et al., 2012; Sterpenich et al., 2009). Furthermore,

neural patterns in the hippocampus have been shown to carry in-

formation about distinct episodes for both recent and remote

autobiographical memories (Bonnici et al., 2012, 2013), suggest-

ing that the hippocampus may continue to represent episodic

features of memories as they are transformed over time, consis-

tent with multiple trace theory (Nadel et al., 2000). Although there

have been attempts to reconcile the dual roles of the hippocam-

pus in integrating memories of overlapping episodes and sepa-

rating memories of distinct episodes (Kumaran and McClelland,

2012; Schapiro et al., 2017), further research is needed to recon-

cile these seemingly disparate hippocampal computations that

occur during learning, and how the resulting memory traces

may change with consolidation.

In the present study, we employed multi-variate pattern ana-

lyses to ask whether memories come to be represented more

similarly to other memories with overlapping content over time.

In this experiment, participants encoded trial-unique objects

paired with one of four repeating scenes, such that multiple

objects were studied with the same scene (‘‘overlapping mem-

ories’’) and others were paired with a different scene (‘‘non-over-

lappingmemories’’). Participants were then scanned during cued

associative retrieval of individual scenesassociatedwitheachob-

ject. Critically, memory for half of the object-scene associations

was tested immediately after learning (recent memories), and

memory for the other half was tested after a week delay (remote

memories, Figure 1A). Manipulating the time between encoding

and retrieval allowed us to attribute any differences between the

two retrieval periods to the additional influence of consolidation

processes on the retrieval of remote memories. Our analysis

approach is different from past work using multivariate patterns

to characterize episodic events: rather than computing the neural

similarity of items within and across categories (LaRocque et al.,

2013), we computed the neural similarity between distinct mem-

ories with and without overlapping features. This allowed us to

quantify thedegree towhichmulti-voxel representations of recent

and remote episodic memories reflect their commonalities.

We asked two distinct but complementary questions: (1) how

does the neural representational similarity between overlapping

and non-overlappingmemory representations change over time,

and (2) how do these changes relate to the reinstatement of

specific episodic information captured during encoding? We

predicted that ongoing consolidation processes would pro-

mote greater representational similarity in mPFC between over-

lapping memories, compared to non-overlapping memories. We
Neuron 96, 228–241, September 27, 2017 229



Figure 1. Experiment Design

(A) During the first session, participants encoded

128 object-scene pairs and then completed object

recognition and scene recall tests for 64 of the

pairs (recent retrieval). A week later, they returned

to complete the same retrieval tasks for the other

64 pairs (remote retrieval).

(B) At encoding, participants viewed each object-

scene pair and rated how vividly they imagined the

object in the scene. During scene recall, partici-

pants were asked to choose which of the four

scenes was studied with each object.

(C) Memory performance during the scene recall

task. **p < 0.01. Error bars signify SEM.

(D) Images of the four scene associates.
predicted that this effect would be evident only for remote mem-

ories, as they will have undergone more consolidation. We also

explored neural similarity in the hippocampus over time, as it is

less clear how hippocampal memory representations evolve as

a result of ongoing consolidation processes. We then asked

how neural similarity between overlapping and non-overlapping

memories relates to measures of episodic reinstatement to

probe whether the restructuring of overlapping memories pro-

motes or interferes with the maintenance of features that are

unique to each memory. Finally, to more closely target consoli-

dation processes, we investigated the relationship between the

restructuring of overlapping memories and changes in functional

connectivity during rest periods after learning.

RESULTS

Memory Performance
On average, participants correctly chose the scene studied with

the object cue for 94.2% (SD: 6.0%) of the recently learned pairs,

and for 54.1% (SD: 14.6%) of the remotely learned pairs. As ex-

pected, participants’ performance was significantly better for
230 Neuron 96, 228–241, September 27, 2017
recent compared to remote memories

(t(21) = 15.05, p < 10 3 10�13) but, impor-

tantly, the percentage of correctly re-

called scenes was significantly greater

than chance (25%) for both retrieval tests

(recent: t(21) = 38.16, p < 0.001; remote:

t(21) = 8.79, p < 0.001; Figure 1C). Object

recognition was computed with d’.

Recognition was above chance (50%)

both for recent memories (mean d’: 6.28,

SD: 1.28; t(21) = 22.93, p < 0.001) and for

remote memories (mean d’: 2.31, SD:

1.28; t(21) = 13.81, p < 0.001). As with

cued recall, object recognition was also

significantly greater for recent memories

relative to remote memories (t(21) =

17.92, p < 0.001).

Retrieval Similarity over Time
To examine the consolidation-dependent

reorganization of overlapping memory
representations, two measures of retrieval similarity were calcu-

lated during both recent (immediately after encoding) and

remote (1 week after encoding) cued associative retrieval (Fig-

ure 2). The multivariate pattern of activation evoked by each

trial-unique object during retrieval was correlated with (1) the

patterns of all other objects studied with the same scene (over-

lapping similarity) and (2) the patterns of all other objects studied

with a different scene (non-overlapping similarity). These two

correlations were computed separately for each object whose

scenewas confidently remembered (HC correct) in each retrieval

session.

To ask whether mPFC comes to represent commonalities

across memories, we first defined a region in mPFC modulated

by retrieval of remote memories. To do this, we performed a uni-

variate analysis that indexed activation during the remote

retrieval session (Figure S1A). Voxels in this mPFC region ex-

hibited greater activation during successful retrieval of remote

memories relative to unsuccessful attempts at retrieval. We

then submitted participants’ retrieval similarity in this region to

a 2 (Time: recent, remote) 3 2 (Overlap: overlapping, non-over-

lapping) repeated-measures ANOVA, limiting the analysis to



Figure 2. Analysis Approach

Several similarity measures were computed for each trial. During retrieval, overlapping similarity (blue) was computed by correlating the pattern of activation

evoked by each object-scene pair with all other patterns from pairs studied with the same scene, and then computing the average across those correlations. Non-

overlapping similarity (orange) was computed by averaging all correlations between that pair’s pattern of activation and the patterns of all pairs studied with a

different scene. ERS (green) was computed for each pair by correlating its pattern at retrieval with its average pattern across its three encoding presentations.
HC correct trials. This revealed a main effect of overlap (F(1,18) =

5.62, p = 0.03), qualified by an interaction between time and

overlap (F(1,18) = 7.33, p = 0.01; Figure 3A). This interaction was

driven by greater similarity among overlappingmemories relative

to non-overlappingmemories during remote retrieval (t(18) = 2.55,

p = 0.02), and no difference in retrieval similarity during recent

retrieval (t(18) = 0.79, p = 0.45). The finding that mPFC shows

greater similarity in retrieval patterns across overlapping mem-

ories compared to non-overlapping memories only after a

week suggests that over time, neural patterns of memories in

mPFC become organized according to their commonalities

with other memories.

The same 23 2 ANOVA also revealed an interaction in bilateral

hippocampus (F(1,18) = 4.89, p = 0.04, Figure 3C). Interestingly,

this interaction was also driven in part by a trend for decreased

retrieval similarity for overlapping relative to non-overlapping

trials (t(18) = �1.78, p = 0.09) during recent retrieval, perhaps

suggestive of pattern separation of overlapping memories

immediately. There was no reliable difference between overlap-

ping and non-overlapping similarity for remote memories (t(18) =

1.66, p = 0.11). A 2 (Overlap: overlapping, non-overlapping) 3 2

(Time: recent, remote) 3 2 (Hemisphere: right, left) ANOVA

revealed no interaction with hemisphere (Table 1), suggesting

that the relationship between feature overlap and time does

not differ significantly in the right or left hippocampus.

There is a growing interest in functional specialization along

the long axis of the hippocampus (Poppenk et al., 2013). In

particular, past work suggests that anterior hippocampus is

more involved in integrative computations, while the posterior

hippocampus is more likely to represent specificity in the envi-

ronment. Based on this research, we investigated whether there

were corresponding differences in retrieval similarity across the

long axis of the hippocampus. We computed a 2 (Overlap: over-

lapping, non-overlapping) 3 2 (Time: recent, remote) 3 2

(Region: anterior, posterior) ANOVA and found an interaction be-
tween region and time (F(1,18) = 6.11, p = 0.02) in addition to a

strong interaction between overlap and time (F(1,18) = 20.93,

p < 0.001; Table 1). To unpack these effects, we computed a 2

(Overlap: overlapping, non-overlapping) 3 2 (Time: recent,

remote) ANOVA separately for patterns in anterior and posterior

hippocampus. In posterior hippocampus, there was no main ef-

fect of time (F(1,18) = 2.50, p = 0.13), but there was a reliable main

effect of overlap (F(1,18) = 11.93, p = 0.002). This main effect

was qualified by a time by overlap interaction (F(1,18) = 19.72,

p < 0.001). This interaction was driven by greater overlapping

similarity relative to non-overlapping similarity for remote (t(18) =

4.13, p < 0.001) but not recent (t(18) = 0.02, p = 0.98) memories,

and greater retrieval similarity for remote trials relative to recent

trials that were overlapping (t(18) = 2.96, p < 0.001) but not non-

overlapping (t(18) = 0.22, p = 0.83). Thus, posterior hippocampus

looked qualitatively similar, but with stronger effects, than the re-

sults from the whole hippocampus.

In anterior hippocampus, there was a marginal main effect of

time (F(1,18) = 3.42, p = 0.08) and a main effect of overlap

(F(1,18) = 7.71, p = 0.01), qualified by an interaction (F(1,18) =

8.10, p = 0.01). Consistent with posterior hippocampus and

mPFC, retrieval similarity was significantly greater for overlap-

ping relative to non-overlapping items for remote (t(18) = 3.06,

p = 0.006) but not recent (t(18) =�0.34, p = 0.74) memories. How-

ever, in contrast to these other regions, retrieval similarity in ante-

rior hippocampus decreased over time for non-overlapping trials

(t(18) = �2.82, p = 0.01) but not overlapping trials (t(18) = �0.72,

p = 0.48).

We next asked whether the time-dependent reorganization

across memories was selective to mPFC and hippocampus, or

whether other brain regions, specifically those in the classic

retrieval network (Rugg and Vilberg, 2013), showed similar re-

sults. We chose posterior medial cortex (PMC), a critical region

in the recollection network that has been shown to reinstate en-

coding patterns during retrieval (Bird et al., 2015; Kuhl et al.,
Neuron 96, 228–241, September 27, 2017 231



Figure 3. Retrieval Similarity

(A) Retrieval similarity in mPFC. Similarity for

overlapping trials was greater than similarity for

non-overlapping trials during remote but not recent

retrieval.

(B) Retrieval similarity in PMC.

(C) Retrieval similarity in hippocampus. In posterior

hippocampus, similarity for overlapping trials

increased over time. In anterior hippocampus,

similarity for non-overlapping trials decreased over

time. **p < 0.01. *p < 0.05. �p < 0.10. Error bars

signify SEM. 5 indicates significant interaction

(p < 0.05).
2011; Long et al., 2016; Chen et al., 2017) to serve as a control

region. Critically, we defined this region from the same contrast

as the mPFC ROI. We applied the same 2 (Overlap: overlapping,

non-overlapping) 3 2 (Time: recent, remote) ANOVA to HC cor-

rect trials and found no effects or interactions (all F values < 0.05,

all p values > 0.82, Figure 3B). Importantly, because we defined

PMC from the same contrast as mPFC, this finding serves as an

effective control and suggests that using this particular univari-

ate contrast did not bias our multivariate results. When we

expanded this region to include all voxels in PMC regardless

of retrieval success, there were still no effects of time or overlap

(all F values < 2.37, all p values > 0.14). Thus, while PMC was

more engaged during successful remote retrieval relative to un-

successful attempts, patterns of activation in this region did not

reflect overlap, as was observed in mPFC and hippocampus.

Prior work has demonstrated that univariate activation in

mPFC and hippocampus changes with consolidation (Taka-

shima et al., 2006; Sterpenich et al., 2007). Based on this, we

examined whether overall univariate activation in these regions

was related to, or could explain, the changes in similarity that

emerged over time.We found no significant differences in activa-

tion during successful retrieval over time (Figures S1B and S1C).
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Furthermore, activation did not reliably in-

fluence the relationship between retrieval

similarity, overlap, and time (Table S1).

Finally, all pairwise tests of retrieval simi-

larity were confirmed with non-parametric

permutation tests (Table S2).

The cued retrieval task required suc-

cessful retrieval of the scene that was

associated with each target object.

Thus, it is unclear whether the time-

dependent changes in retrieval similarity

track how strategic retrieval processes

change over time, or whether they might

still be evident without demands on asso-

ciative retrieval. To examine this, we

computed the same similarity analyses

on object recognition trials, where reacti-

vation of the overlapping scene is not

required or necessary to perform the

task. We found a similar but weaker

pattern of effects in the hippocampus

and mPFC (Figure S2, Table S3). This
suggests that retrieval similarity in this experiment is sensitive

to a mixture of information: signal corresponding perhaps more

to the memory trace itself, as well as signal corresponding to

the explicit retrieval of the corresponding scene image.

Encoding Similarity
In prior work using the associative inference (AB-BC) paradigm,

memory representations in the hippocampus have been shown

to be reinstated when encoding a new event that contains fea-

tures from a prior event (Schlichting et al., 2014). While we did

not observe differences in retrieval similarity across recent

memories, there is still the possibility that this effect emerged

during learning and contributed to the remote retrieval effects.

To assess this possibility, we computed overlapping and non-

overlapping similarity across encoding. We found evidence

of pattern separation signals in hippocampus—specifically,

greater non-overlapping similarity relative to overlapping simi-

larity—and no effects in mPFC. Furthermore, encoding similarity

did not relate to retrieval similarity on a trial-by-trial basis

(Figure S3).

However, past work using similar approaches has found that

other regions are able to represent overlapping memories during



Table 1. Results of Repeated-Measures ANOVAs Predicting

Pattern Similarity in the Hippocampus

Effects DFn DFd F p

Hemisphere

Time 1 18 0.059 0.811

Overlap 1 18 2.041 0.170

Hemisphere 1 18 4.494 0.048*

Time 3 Overlap 1 18 6.895 0.017*

Time 3 Hemisphere 1 18 0.032 0.859

Overlap 3 Hemisphere 1 18 0.396 0.537

Time 3 Overlap 3 Hemisphere 1 18 0.118 0.735

Long axis organization

Time 1 18 0.037 0.850

Overlap 1 18 13.030 0.002*

Region 1 18 11.770 0.003*

Time 3 Overlap 1 18 20.930 <0.001*

Time 3 Region 1 18 6.107 0.024*

Overlap 3 Region 1 18 1.063 0.316

Time 3 Overlap 3 Region 1 18 0.410 0.530

Top: Time (recent, remote), Overlap (overlapping, non-overlapping),

Hemisphere (right, left), and all interactions were included as factors.

Bottom: Time (recent, remote), Overlap (overlapping, non-overlapping),

Region (anterior, posterior), and all interactions were included as factors.

*p < 0.05.
encoding (Xue et al., 2010; Ward et al., 2013; Xiao et al., 2017) or

during retrieval immediately after (Kuhl and Chun, 2014). To find

evidence for this in our own experiment, we examined pattern

similarity in PPA, a ventral temporal region that codes for scene

information (Epstein and Kanwisher, 1998), and in exploratory

searchlights. We found that visually sensitive regions exhibited

greater similarity for overlapping trials relative to non-overlap-

ping trials, with no reliable changes over time (Figure S4, Table

S4). This hints at how different features of memories may be rep-

resented in distinct regions: regions that may be more sensitive

to specific visual content show evidence of representational

overlap at both recent and remote time points, but memory rep-

resentations in the hippocampus and mPFC appear to undergo

transformations and come to represent overlap in memory more

strongly after a delay.

Episodic Reinstatement during Retrieval
Past research has found that encoding-retrieval similarity (ERS),

measured as the similarity between the neural pattern of a paired

associate during encoding and the pattern evoked by its suc-

cessful retrieval, has been related to successful memory retrieval

(Staresina et al., 2012; Ritchey et al., 2013; Tompary et al., 2016).

Our results so far show that memories become reorganized with

time, raising the question of whether encoding patterns associ-

atedwith eachmemory are still reinstated during remote retrieval

despite such reorganization. To address this question, we

computed ERS for each object-scene pair by correlating each

trial’s encoding pattern, averaged across the three encoding

presentations, with the pattern evoked by its later retrieval

(‘‘same-memory ERS’’). To identify the extent to which ERS re-
flects reinstatement signals that may be shared across different

memories, we correlated the average correlation between the

pattern of each retrieval trial and all patterns of encoding trials

that shared the same scene (‘‘same-scene ERS’’). By comparing

these two measures, we were able to isolate the extent to

which memory-specific information is reinstated during retrieval

(Figure 4A, left). Based on past findings that episodic memory

representations are reinstated specifically in the right hippocam-

pus (Mack and Preston, 2016; Tompary et al., 2016), we exam-

ined whether neural patterns in right hippocampus remained

sensitive to the reinstatement of individual memories after

a week.

We first focused on remote retrieval. A 2 (Accuracy: HC cor-

rect, incorrect) 3 2 (ERS: same-memory, same-scene) ANOVA

revealed an interaction between accuracy and ERS (F(1,18) =

5.94, p = 0.03), and a trend for a main effect of accuracy

(F(1,18) = 3.59, p = 0.07) but not ERS (F(1,18) = 0.42, p = 0.52; Fig-

ure 4A, right). The interaction was driven by greater same-mem-

ory ERS for remembered pairs relative to forgotten pairs during

remote retrieval (t(18) = 2.25, p = 0.04), consistent with the past

work described above. Furthermore, the interaction was driven

by greater same-memory ERS relative to same-scene ERS in

remembered pairs (t(18) = 2.47, p = 0.02), suggesting that the right

hippocampus exhibits memory-specific reinstatement at this

time point.

To investigate whether there were changes in successful

memory reinstatement over time, we entered all ERS values for

HC correct trials into a 2 (Time: recent, remote) 3 2 (ERS:

same-memory, same-scene) ANOVA. We found a trending inter-

action between time and ERS (F(1,18) = 3.36, p = 0.08), a trending

main effect of ERS (F(1,18) = 4.14, p = 0.06), and no effect of time

(F(1,18) = 0.09, p = 0.77). Like in the above paragraph, this interac-

tion was driven by greater same-memory ERS than same-scene

ERS for remote memories (t(18) = 2.47, p = 0.02) but not recent

memories (t(18) = 0.11, p = 0.91). Interestingly, there was also a

reliable decrease in same-scene ERS over time (t(18) = 2.68,

p = 0.02), but no reliable difference in same-memory ERS over

time (t(18) = �0.75, p = 0.46).

Themodulation of memory-specific ERS by remote memory in

right hippocampus remained significant when accounting for

variability in univariate activation across trials (Table S5) and

was not driven by variability in the number of trials in each con-

dition across participants (Table S6). By contrast, in left hippo-

campus, mPFC, and PMC, ERS was not modulated by remote

memory success and did not differ between recent and remote

retrieval (all p values > 0.34). When considered with the retrieval

similarity, these findings suggest that the hippocampus con-

tinues to reinstate details of individual memories, while also rep-

resenting structure across memories.

Relationship between Retrieval Similarity and ERS
Interestingly, the hippocampus showed evidence both for mem-

ory-specific reinstatement and for the consolidation-dependent

reorganization of related memories. To directly assess the rela-

tionship between these two effects in the hippocampus, we

entered trial-level estimates of memory-specific ERS (same-

memory – same-scene), time (recent, remote), and retrieval sim-

ilarity (overlapping – non-overlapping) into a mixed-effects linear
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Figure 4. Encoding-Retrieval Similarity

(A) Same-memory and same-scene ERS during recent and remote retrieval. In the right hippocampus, same-memory ERS was greater for HC correct trials

relative to same-scene ERS and relative to incorrect trials during remote retrieval. *p < 0.05. Error bars signify SEM.

(B) Relationship between memory-specific ERS and retrieval similarity. Retrieval similarity was inversely correlated with ERS during remote retrieval, but not

recent retrieval. Gray points represent all trials included in the analysis. Green lines represent the best fit line representing the relationship between retrieval

similarity and memory-specific ERS. Gray ribbons signify 95% confidence intervals. *p < 0.05.
regression. For both anterior and posterior hippocampus, this

model revealed an interaction between ERS and time (anterior:

c2 = 7.42, p = 0.006, posterior: c2 = 8.66, p = 0.003, Figure 4B).

Focusing on remote memory, we found an inverse relationship

between ERS in right hippocampus and retrieval similarity in

both anterior and posterior hippocampus (anterior: c2 = 5.32,

p = 0.02, posterior: c2 = 5.44, p = 0.02), such that trials with

greater memory-specific ERS in right hippocampus exhibited

a smaller difference in retrieval similarity for overlapping rela-
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tive to non-overlapping memories. This relationship was not

apparent when applying the same model to recent memory

(anterior: c2 < 0.001, p = 0.99, posterior: c2 = 0.085, p = 0.77),

and ERS in right hippocampus did not relate to retrieval similarity

in mPFC (c2 = 0.016, p = 0.90). These findings highlight a poten-

tial trade-off between memory-specific reinstatement, perhaps

reflecting the fidelity of detailed episodic recovery, and consoli-

dation-dependent memory restructuring evident across related

memories. Such a trade-off suggests that over time, memories



Figure 5. Rest Connectivity

(A) Rest connectivity approach. Rest scans were

preprocessed, stripped of nuisance signals, and

band-pass filtered. The mean residual signal was

extracted from each ROI for each volume of each

scan. Functional connectivity was measured

either by entering the mean time course of a seed

region in a whole-brain voxelwise GLM (B), or

by correlating the mean time courses of two re-

gions (C).

(B) Encoding-related changes in connectivity.

Clusters indicate regions whose connectivity with

the whole hippocampus (left) and mPFC (right) is

greater after encoding relative to a pre-encoding

baseline. Clusters survived correction for multiple

comparisons using cluster-mass thresholding

(p < 0.05, cluster-forming threshold z = 2.3).

(C) Across participants, the change in connectivity

between anterior hippocampus and mPFC (post-

encoding – baseline rest) positively correlated with

the average difference in retrieval similarity (over-

lapping – non-overlapping) in anterior hippocam-

pus, only for remote memories. Gray dots

represent participants. Gray ribbons signify 95%

confidence intervals. *p < 0.05.
whose patterns more closely match their initial encoding state

may be less likely to be integrated with related memories.

Relationship between Retrieval Similarity and Rest
Connectivity
Prior work has shown that early indicators of memory consolida-

tion can be measured during immediate post-encoding rest

periods (Tambini et al., 2010; Tambini and Davachi, 2013;

Schlichting and Preston, 2014; Tompary et al., 2015). Thus, we

aimed to test to what extent post-encoding connectivity may

be related to long-term memory reorganization. Our first

approach was to query whether there were global changes in

connectivity with the hippocampus and mPFC as a result of

encoding. To do this, we conducted exploratory seed analyses

by entering the average time courses of hippocampal and
Neu
mPFC activation into separate voxel-

wise GLMs for each rest scan. When

comparing post-encoding connectivity

(averaged over the three post-encoding

rest scans) against baseline pre-encoding

connectivity, we found evidence for sig-

nificant increases in hippocampal con-

nectivity with regions including but not

limited to: left middle frontal gyrus, left

inferior frontal gyrus, and left lateral occip-

ital cortex (Figure 5B, left). There were

also increases in mPFC connectivity with

anterior cingulate gyrus, left supramargi-

nal gyrus, and others (Figure 5B, right).

For a full list of regions identified in these

two analyses, see Table S7.

Having established that encoding

induced lingering changes in connectivity
with these regions during rest, we developed a more targeted

ROI-based approach to identify whether such encoding-related

changes in rest connectivity related to changes in retrieval simi-

larity over time. To do this, we correlated the time course of acti-

vation between the hippocampus (whole, anterior, and posterior)

and mPFC before and after encoding for each participant (Fig-

ure 5A). We then related the change in connectivity after encod-

ing (post-encoding – pre-encoding) to the difference in retrieval

similarity (overlapping – non-overlapping) across participants.

This approach revealed a positive correlation between mPFC-

anterior hippocampus connectivity and retrieval similarity in

anterior hippocampus (Figure 5C). This relationship was present

for remote memories (r(17) = 0.53, p = 0.02) and not recent mem-

ories (r(17) = �0.01, p = 0.96). Specifically, participants with a

greater increase in mPFC-anterior hippocampus connectivity
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immediately after learning exhibited a greater difference in simi-

larity for overlapping versus non-overlapping memories (i.e.,

more restructuring) after a week. This relationship between con-

nectivity and retrieval similarity was numerically but not signifi-

cantly greater for remote memories relative to recent (William’s

Test: t(18) = 1.66, p = 0.11). No other ROI pairs exhibited a rela-

tionship between connectivity and remote retrieval similarity (all

p values > 0.26).

Together these exploratory findings suggest that immediate

post-learning changes in connectivity may reflect a consolida-

tion mechanism that plays an active role in shaping memories

over time, in a way that prioritizes their commonalities.

DISCUSSION

In the present study, we examined how representations of indi-

vidual memories are transformed with consolidation. We found

that memory representations in medial prefrontal cortex and in

the hippocampus came to represent commonalities across

memories only after a period of consolidation. Specifically, the

neural patterns evoked during retrieval of overlapping memories

were more similar to each other relative to patterns evoked by

non-overlapping memories. Critically, this was evident only for

memories retrieved 1 week after encoding. At the same time,

reinstatement of encoding patterns was still evident in right hip-

pocampus at 1 week, as indexed by greater encoding-retrieval

similarity (ERS) for object-scene pairs remembered with high

confidence relative to forgotten pairs.

These findings provide evidence in support of the theory that

cortical regions come to store an extracted and transformed

version of episodic memory traces over time (McClelland et al.,

1995; Winocur et al., 2010). To date, most consolidation

research supporting this theory has shown that mPFC becomes

increasingly engaged during remote versus recent retrieval, such

that there is greater activation in mPFC and greater mPFC-hip-

pocampal connectivity when retrieving consolidated memories

relative to newly formed ones (Sterpenich et al., 2007, 2009;

Takashima et al., 2006, 2007; Sweegers et al., 2014). Addition-

ally, one study has shown that personal autobiographical mem-

ories can be successfully decoded in ventral mPFC, with greater

accuracy for older compared to newer memories (Bonnici et al.,

2012). Taken together, this past research provides compelling

evidence of the growing involvement of cortical regions in storing

and retrieving memories over the course of consolidation. How-

ever, little was known about whether this transformation is sen-

sitive to the content of memories and whether memories with

featural overlap are represented differently than memories

without overlap. Here, we show that mPFC represents the cen-

tral tendencies across episodic experiences, but only after a

period of consolidation.

We also found greater similarity for overlapping memories

relative to non-overlapping memories in the hippocampus,

and, again, this difference was only present for remote mem-

ories. This finding is striking given theoretical and empirical

work concerning the function of the hippocampus in memory

consolidation. Most theories posit that the hippocampus orthog-

onalizes incoming information in order to avoid interference from

related past experiences (O’Reilly and McClelland, 1994).
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Indeed, there is now a growing body of evidence for pattern sep-

aration signals in the hippocampus during encoding (Leutgeb

et al., 2007; Bakker et al., 2008; LaRocque et al., 2013; Favila

et al., 2016; Chanales et al., 2017) and work showing that vari-

ability in neural patterns across repeated testing is related to

long-term retention (Karlsson Wirebring et al., 2015). In the pre-

sent experiment, hippocampal similarity across encoding was

lower for overlapping trials relative to non-overlapping trials,

consistent with this theoretical and empirical work. On the other

hand, Cohen and Eichenbaum’s relational memory theory

(Cohen and Eichenbaum, 1993) hypothesizes that the hippo-

campus may support access to related memories through

relational ‘‘nodes’’ or neural ensembles that link overlapping

memories. Research consistent with this theory finds that

retrieval of overlapping memories is associated with hippocam-

pal univariate activation during transitive inference (Heckers

et al., 2004; Greene et al., 2006) and associative inference tasks

(Preston et al., 2004) with greater activity for trials with features

that overlapped with prior encoding trials. One potential expla-

nation for why this is not evident in our results is that the differ-

ence in the necessity or expectation of integration at encoding

may dictate whether stimuli are integrated or separated (Richter

et al., 2016). Another factor that may bias encoding processes

toward integration is the memory strength of past overlapping

episodes. For instance, in an associative inference design,

Schlichting and colleagues (2015) found that neural patterns in

a hippocampal cluster was biased toward integration only if

the AB pairs were strongly learned in a separate block before

participants were presented with BC pairs. Interestingly, in our

study, encoding patterns in the hippocampus represented over-

lappingmemoriesmore distinctively than non-overlappingmem-

ories, but then after a week of consolidation, retrieval patterns

came to reflect integration. Morework is needed to reconcile dis-

crepancies between separation and integration signals in the

hippocampus during encoding and how and when such signals

may shift over the course of consolidation.

What time-dependent mechanisms may support the restruc-

turing of overlapping memories? One possibility is that through

active consolidation mechanisms, such as coordinated replay

of memories in hippocampus and cortex, the associative links

across memories with shared features may become strength-

ened. This strength could emerge through the distribution

and representation of these links in cortical regions (Figure 6,

bold lines). While few studies to date have investigated what

dictates the reactivation or replay of specific features of mem-

ories, it may be that the overlapping components across

different memories are prioritized over one-time, episode-spe-

cific features. The findings from the present experiment provide

preliminary evidence for such a mechanism, as measured by

changes in connectivity during periods of awake rest. Specif-

ically, we found that connectivity with the hippocampus and

mPFC was strengthened after encoding, relative to a pre-en-

coding baseline. Further, across participants, the encoding-

related change in connectivity between mPFC and anterior

hippocampus related to the representation of overlap in ante-

rior hippocampal after 1 week. This suggests that restructuring

of memories over time may be driven in part by consolidation

mechanisms.



Figure 6. Schematic of the Theorized Neural

Transformation of Overlapping Episodic

Memories

Three memories share an overlapping element

(image of a rainforest). The representation of each

memory consists of nodes representing features

shared with other memories (green) or features

unique to that memory (multi-colored). The thick-

ness of line between two nodes represents the

likelihood of coordinated activation of those no-

des. Initially, the encoding and retrieval of each

memory may recruit an overlapping subset of

nodes as well as a distinct subset. Through

consolidation mechanisms and other time-

dependent processes, such as forgetting, memory

representations may change along several di-

mensions: through loss of episodic details (fading

or disappearance of nodes), or through strength-

ening of connections between overlapping

features (thickening of lines between nodes).

Schematic memories may lose the majority of

unique nodes and retain strongly connected

overlapping nodes. Memories that remain vividly

episodic may retain unique nodes, but the con-

nections between overlapping nodes may not be

strengthened. Variations in how memories are

transformed along these two dimensions may

support the extraction and representation of gist-

level or semantic memory over time.
Forgetting may also play a role. Specifically, forgetting of

unique details that differentiate related events may also result

in the merging of overlapping memories over time. Such

episode-unique features may be more likely to be represented

in the hippocampus (Figure 6, faded dots). Selective forgetting

of these details may be adaptive because it enables the creation

of models of past experiences that are not over-fitted; rather, by

selectively retaining overlapping information and forgetting

episode-unique information, our past experiences can be

sculpted into a less detailed but more generalizable model that

can inform decisions about new experiences in the current envi-

ronment (Richards and Frankland, 2017). However, the fact that

we see immediate increases in post-encoding connectivity that

relate to memory restructuring in hippocampus at 1 week sug-

gests that measurable, active consolidation processes also

play a role. Most likely, both consolidation mechanisms and se-

lective forgetting work together to shape memories over time,

but future work is needed to measure the how each of these pro-

cesses separately contributes to time-dependent changes in

long-term memory representations.

We also found evidence that neural patterns in right hippo-

campus, but not the mPFC, reflected the successful reinstate-

ment of episodic memories after 1 week of consolidation. This

finding extends the growing body of work using encoding-

retrieval similarity (ERS) approaches to assess episodic rein-

statement during memory retrieval in the hippocampus (Mack

and Preston, 2016; Tompary et al., 2016) as well as in sensory re-

gions across cortex (Johnson et al., 2009; Staresina et al., 2012;

Ritchey et al., 2013; Kuhl and Chun, 2014; Danker et al., 2017).

Furthermore, by computing ERS in addition to similarity across

retrieval, we were able to quantify different aspects of represen-
tational information for each memory. The comparison of these

two measurements revealed an interesting trade-off within

remote memories: episodes whose neural patterns during

retrieval better matched their initial encoding experience

exhibited lower similarity with other overlapping memories.

This consolidation-dependent trade-off between episodic

reinstatement and the merging of related memories with consol-

idation in the hippocampus raises interesting questions concern-

ing how different elements of memories are shaped with

consolidation.

Moreover, these two processes may operate independently,

such that the relative strength of memory traces in hippocampus

and cortex determine the elements of memory that can be

retrieved, as predicted by trace transformation theory (Winocur

et al., 2010). For example, neural patterns in the hippocampus

are able to support successful decoding of vivid and perceptu-

ally rich autobiographical memories for at least 10 years (Bonnici

et al., 2013), suggesting that the hippocampus retains some

differentiated episodic information well after encoding. At the

same time, schema research provides additional evidence

for the idea that stronger cortical representations come to repre-

sent generalized memories. Anatomically, the ventral aspect of

the mPFC region reported in our experiment partially overlaps

with several other clusters found to be involved in schema-

supported processing (van Kesteren et al., 2010a, 2014). In

this body of work, mPFC activation during encoding is enhanced

for content belonging to a schema (van Kesteren et al., 2010b,

2014; Bein et al., 2014) and is modulated by the retrieval of sche-

matic information (van Kesteren et al., 2010a). While these

studies do not consider how schematic memory interacts

with episodic reinstatement, recent neuropsychological studies
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have demonstrated that damage to ventral mPFC reduces the

schematic influence of associated information during episodic

memory tests (Warren et al., 2014; Spalding et al., 2015), sug-

gesting that ventral mPFC plays a necessary role in modulating

episodic memory reinstatement for recent experiences. Future

work, ideally using behavioral tests that are sensitive to the re-

covery of different elements of episodic memories, is necessary

to investigate whether and how reinstatement of unique details in

the hippocampus would interfere with the retrieval of more

generalized, flexible information represented in the hippocam-

pus and in cortex.

One limiting factor in our experiment stems from the compar-

ison of high-confident correct memories retrieved immediately

after encoding versus after a week delay. Memories retrieved

immediately after encoding may be a mix of strong and weak

memories, some of which would have been forgotten if they

had been tested a week after encoding. In contrast, memories

that were successfully retrieved after a week were likely limited

to those that were the strongest and most enduring. With the

present design, it is unclear whether the stronger memories

retrieved immediately after encoding might also show evidence

for overlap (e.g., exhibit greater overlapping versus overlapping

similarity). If this were the case, an argument could be made

that only traces of strong memories show representational over-

lap, without undergoing any time- or consolidation-dependent

transformations. Alternatively, it may be that retrieval strength

alone is not related to the representation of overlap, and instead

some consolidation-dependent transformation is necessary for

this representation to emerge. Indeed, one could argue that

the strongest memories may be those with the most distinctive

episodic content and hence be less likely to show overlap with

other related memories. More research is needed to adjudicate

between these two interpretations.

We found that over time, memory representations in anterior

and posterior hippocampus diverged, such that after a week

of consolidation, neural patterns of non-overlapping memories

were less similar in anterior hippocampus, while neural patterns

of overlapping memories were more similar in posterior hippo-

campus. This finding is difficult to reconcile with some recent

findings implicating anterior hippocampus in memory integra-

tion, not separation. In humans, anterior hippocampus exhibits

greater activation during the encoding (Shohamy and Wagner,

2008) and retrieval of overlapping associations (Heckers et al.,

2004; Preston et al., 2004; Greene et al., 2006). Furthermore,

neural patterns in anterior hippocampus have been shown to

reflect learning of overlapping and sequential associations

(Schapiro et al., 2012; Schlichting et al., 2015). In rodents,

receptive fields in dorsal hippocampus are smaller than ones

found in ventral hippocampus (Kjelstrup et al., 2008). Taken

together, this research suggests that anterior hippocampus

may be more involved in integrative computations while the pos-

terior hippocampus represents specificity in the environment

(Poppenk et al., 2013). However, our results are more consistent

with theories that situate hippocampal computations within

larger functional networks. Anatomically, perirhinal cortex

(PRC) and parahippocampal cortex (PHC) show preferential

connectivity with anterior and posterior hippocampus, respec-

tively, through connections with lateral and medial entorhinal
238 Neuron 96, 228–241, September 27, 2017
cortex (Burwell and Amaral, 1998; Suzuki and Amaral, 1994;

Witter et al., 2000). A model of medial temporal lobe function

based on this anatomy suggests that anterior hippocampus

and PRC are part of a larger anterior-temporal network that is

sensitive to specific items, concepts, and their salience, while

posterior hippocampus and PHC are part of a larger posterior-

medial network that may be more sensitive to spatial and tem-

poral contexts (Davachi, 2006; Ranganath and Ritchey, 2012).

Within this framework, one may predict a greater sensitivity to

distinct features of memories in anterior hippocampus, and a

bias toward representing overlapping information in posterior

hippocampus, particularly when the overlapping information

content are scenes—consistent with our findings. While these

exploratory anterior-posterior differences should be interpreted

with caution, they are suggestive of two opposing functions

within the hippocampus that may drive the emergence of struc-

ture across memories: integration of related memories and sep-

aration of distinct memories.

In summary, the present results demonstrate that neural rep-

resentations of related memories merge with consolidation.

These findings raise new questions about the features of

episodic memories that are prioritized by consolidation mecha-

nisms. While more work on this topic needed, we suggest that

the reorganization of overlapping memory representations may

play an important role in the creation of structured general

knowledge.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Twenty-two students from New York University (10 female, mean age: 26.8, range: 21 – 34) participated in the experiment. All par-

ticipants were right-handed native English speakers with normal or corrected to normal vision. The New York University Institutional

Review Board approved all consent protocols.

METHOD DETAILS

Experiment design
Participants completed two fMRI sessions separated by one week. In the first session, participants were scanned while encoding

pairs of objects and scenes, and then performing object recognition and scene recall tests for half of the pairs. In the second session

one week later, they completed the same recognition and recall tests on the other half of the pairs (Figure 1A).

Encoding
Participants were presented with images of 128 objects, each paired with one of four scenes: beach, city, bedroom or jungle (Fig-

ure 1B). They were explicitly instructed to associate each object-scene pair by vividly imagining the object interacting in the scene.

The object-scene pairings were randomized across participants, and the order of the pairs was pseudo-randomized such that no

back-to-back pair shared the same scene. Participants studied each pair three times across encoding, split across six encoding

scans. Each presentation of all 128 pairs was pseudo-randomly divided over two 10.5 m scans, such that the number of trials con-

taining each scene associate was equated across the two scans. Participants viewed each pair for 3 s, and then rated the vividness of

their mental image on a scale of 1 to 4 (1: ‘not vivid’, 4: ‘very vivid’) using anMRI-compatible button box. The responsemappingswere

counterbalanced across participants. Participants were given the option of pressing the thumb button to indicate that they failed to

create a vivid scenario of the object in the scene. The response window lasted for 2 s and was followed by a jittered fixation period

lasting 3, 4.5 or 6 s.

Rest scans
The experiment began with an 8m baseline rest scan, followed by the first presentation of the pairs across two encoding scans. Each

of the three presentations of the stimulus set was followed by another 8 m resting state scan, for a total of 6 encoding scans inter-

leaved with 4 rest scans. During the rest scans, participants fixated a small black dot in the center of a gray screen and were in-

structed to remain awake and think about whatever they like.

Object recognition
After the final rest scan, participants completed an object recognition test in two 10.5 m scans. They viewed 64 of the encoded

objects intermixed with 64 novel foils and were asked to endorse each object as old or new. The five response options included a
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measure of confidence (‘confident old’, ‘unsure old’, ‘unsure new’, ‘confident new’, ‘don’t know’) and the response mappings were

counter-balanced across participants. On each trial, the object cue was presented for 3 s, and then the response options were dis-

played during a 2 s window. Each trial was followed by a jittered fixation period ranging from 3 to 6 s. All trials included in the retrieval

and recognition similarity findings were correctly recognized during this test (with trials included in retrieval similarity analyses

requiring high-confident scene retrieval in addition to successful recognition).

Scene recall
The object recognition task was followed by the scene recall task, which comprised two 6 m scans. Participants viewed 64 of the

encoded objects and were asked to choose which of the four scenes had been associated with each object. As in the object recog-

nition, the stimulus presentation lasted for 3 s. During the following 2 s response window, participants viewed a prompt with the

response options (‘beach’, ‘city’, ‘bedroom’, ‘jungle’, ‘don’t know’), which were counter-balanced across participants. After this

response, participants were prompted to judge the confidence of their choice on a scale of 1 to 4 (1: ‘not confident’, 4: ‘very confi-

dent’). These responses were collapsed into two bins (1-2: low-confident, 3-4: high-confident). This second response window lasted

for 2 s and was followed by a jittered fixation period ranging from 3 to 6 s.

Remote retrieval session
Participants returned to the scanner one week later and completed the object recognition and scene recall tasks on the other 64

object-scene pairs that had not been tested in the first session. All timing, test order, and stimulus presentation parameters were

identical to the memory tests from the first session.

Participants then completed two 10 m localizer scans. During the localizer scans, participants viewed 5 blocks each of faces,

scenes, objects and scrambled images. Each block contained 12 images that appeared on screen for 1.5 s. Two out of every 12 im-

ages repeated back-to-back, and participants were instructed to press a button when they noticed an immediate repetition of any

image. The order of the blocks was randomly generated for each participant and each block was separated by a 12 s fixation period.

fMRI parameters
All scanning was performed using a 3T Siemens Allegra MRI system with a whole-head coil. Visual stimuli were projected onto a

screen that was viewed through a mirror attached to the participant’s head coil. Functional echo-planar imaging (EPI) scans were

oriented to intersect the anterior and posterior commissures (2000-ms TR, 15-ms TE, flip angle = 82�, FOV = 192x240, 34 slices,

3-mm isotropic voxels). For both sessions, a customized calibration scan was collected using the same slice prescription as the

EPI scans for use as an in-plane spin-density image as well as an estimate of any inhomogeneities in the magnetic field. At the

end of the second scan, a T1-weighted magnetization-prepared rapid-acquisition gradient echo (MPRAGE) sequence (1 mm

isotropic voxels, 176 sagittal slices) was collected.

Preprocessing
All scans underwent the same preprocessing steps using FSL (FEAT: http://www.fmrib.ox.ac.uk/fsl). The first 6 volumes of each EPI

were discarded to allow for scanner stabilization. Then, each scan was slice-time corrected, realigned to correct for motion within

each run, and smoothed. Data to be used for similarity analyses were smoothed with a 3mm FWHM Gaussian kernel. For data to

be used in univariate or connectivity analyses, a 6mm kernel was applied. The data were high-pass filtered at 0.01 Hz to remove

low-frequency drifts in signal.

Regions of interest
We identified mPFC and PMC using a univariate contrast at remote retrieval, which identified voxels with greater activation for high-

confident (HC) correct relative to incorrect trials (Figure S1A). PMC was further constrained by masking the voxels in this contrast by

the PMC region defined by a probabilistic atlas (Shirer et al., 2012; Chen et al., 2016). Bilateral hippocampus was anatomically

defined using FSL’s automatic subcortical segmentation protocol (FIRST). The hippocampus was segmented along its long axis

by dividing the number of coronal slices in each hemisphere into three sections. The most anterior third of the coronal slices was

designated as anterior hippocampus, and the most posterior third of the coronal slices was designated as posterior hippocampus.

The localizer scans were used to functionally define PPA (see Localizer section of STARMethods). All ROIs were resampled, masked

to exclude voxels outside of the brain, and aligned with the functional volumes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Retrieval activation
To investigate how univariate activation related to successful retrieval over time, the retrieval scans were entered into to voxel-wise

GLMs (FEAT). Trials were modeled with 3 s boxcars locked to the onset of each trial and convolved with FEAT’s hemodynamic

response function (HRF). Three regressors were included in each GLM to account for source recall accuracy: (1) high-confident cor-

rect responses, (2) low-confident correct responses, and (3) incorrect, missing, or ‘don’t know’ responses. To account for potential

artifacts from head motion, the 6 motion regressors derived from the motion correction procedure were included in each GLM along
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with their temporal derivatives, as well as stick function regressors to account for sudden head movements. These stick functions

were generated by FSL’s Motion Outliers algorithm, which identifies large displacements in head position by measuring the differ-

ence in intensity between each volume and the preceding volume.

The resulting statistical maps were aligned to MNI space by concatenating a rigid-body transformation from each functional run to

the participant’s MPRAGE with a non-linear transformation from the MPRAGE to MNI space with a 10 mm warp resolution. These

aligned images were entered into group-level analyses and corrected for multiple comparisons using cluster-mass thresholding

(p < 0.05, cluster-forming threshold z = 2.3). Average t values were extracted across all ROIs separately for the recent and remote

retrieval sessions.

Localizer
Two localizer scanswere used to functionally define PPA. Each scanwas entered into a voxel-wiseGLMwith regressors correspond-

ing to the four categories of stimuli, their temporal derivatives, and the same motion regressors that were derived for retrieval scans.

Each of the four regressors of interest was modeled as 18 s boxcars locked to the onset of each block and convolved with FEAT’s

HRF. Parameter estimates from the two scans were averaged together. Bilateral PPA was defined from a contrast of scenes > faces

within each participant. Each ROI was created by growing an 8-mm sphere around the most scene-selective voxel in each

hemisphere of the posterior parahippocampal gyrus.

Pattern similarity estimates
All preprocessed encoding, recognition, and retrieval scans were modeled in separate GLMs in each participant’s native space. For

each trial, a separate regressor was generated, using a 3 s boxcar at the onset of the trial and convolved with FEAT’s HRF (Mumford

et al., 2012). This resulted in 2 GLMs each for remote retrieval, recent retrieval, recent recognition, and remote recognition, each with

32 boxcar regressors, and 6 GLMs for encoding, each with 64 boxcar regressors. For recognition scans, an extra regressor was

included, with 3 s boxcars that corresponded to the onsets of all novel foils in each run. The equivalent regressors that were included

to account for head motion in the univariate GLMs were included in these models as well.

This procedure resulted in a separate map of t values for each trial during encoding, recognition, and retrieval. Then, for each trial,

the resulting spatial pattern of activity across each ROI was extracted into a vector and z-scored. Similarity between different vectors

was computed using Pearson correlations. All correlations were Fisher-transformed prior to statistical testing. Four measures of

pattern similarity were computed: retrieval similarity (correlations among retrieval patterns), recognition similarity (correlations among

recognition patterns), encoding similarity (correlations among encoding patterns), and encoding-retrieval similarity (correlations be-

tween encoding patterns and retrieval patterns).

Retrieval similarity
Retrieval similarity was computed for every HC correct retrieval trial whose corresponding object was also correctly recognized. Each

trial’s retrieval vector was correlated with (1) the retrieval vectors of all other objects with a shared scene (overlapping similarity), and

(2) the retrieval vectors of all objects with a different scene (non-overlapping similarity). The resulting r values were then averaged to

create one measure of overlapping similarity and one measure of non-overlapping similarity for each trial. To avoid inflated correla-

tions as a function of temporal proximity with each scan (Mumford et al., 2014), correlations were limited to trials occurring in

different scans.

These correlations were calculated separately for objects presented in each retrieval period (recent and remote). Importantly, only

objects that were successfully recognized and whose scenes were recalled with high confidence were included in this analysis. Low-

confident correct trials were excluded because at the group level, low-confident responses were more likely to be incorrect than cor-

rect during remote retrieval (t(18) = �3.39, p < 0.01), and were equally likely to be correct relative to incorrect during recent retrieval

(t(18) = 0.36, p = 0.92), suggesting that some unknown proportion of the low-confident correct responses were not based on intact

memory and instead were guesses. Recognition similarity was computed in the same way as retrieval similarity, but instead included

all recognition trials where participants endorsed the target object as ‘old’ with high confidence.

Encoding similarity
Encoding similarity was computed in a similar fashion as retrieval similarity. First, for each trial, the three vectors corresponding to

each encoding presentation were averaged into one pattern. Then, overlapping and non-overlapping similarity scores were

computed separately for each trial without considering subsequent memory or whether it would be tested immediately or after

one week. In other words, the average pattern evoked by an object-scene pair during encoding was correlated with (1) the average

encoding vectors of all objects with a shared scene and (2) the average encoding vectors of all objects with a different scene.

Encoding-retrieval similarity
Encoding-retrieval similarity (ERS; Xue et al., 2010; Staresina et al., 2012; Ritchey et al., 2013) was computed for every object-scene

pair. To do this, each trial’s average encoding vector was correlated with its corresponding retrieval vector, resulting in one ERS value
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for each object-scene pair (‘same-memory ERS’). The correlations were then sorted by retrieval period (recent and remote) andmem-

ory performance (HC correct retrieval and correct recognition, versus incorrect recognition and/or retrieval) and averaged across tri-

als within each condition for each participant.

As a control comparison, we computed ERS across trials with different objects but shared scenes (‘same-scene ERS’). To do this,

each trial’s retrieval vector was correlated with the average encoding vector of each trial that shared the same scene and memory

status (HC correct retrieval and correct recognition, versus incorrect recognition and/or retrieval). These correlations were averaged

together to create ameasure of same-scene ERS for each trial, then averaged across trials within each condition for each participant.

To index the extent to which ERS captures the reinstatement of trial-specific information, same-scene ERS was subtracted from

same-memory ERS for each trial, and for each participant (‘memory-specific ERS’).

Searchlight analyses
To explore the influence of overlap and time on pattern similarity outside of our a priori ROIs, we conducted whole-brain searchlight

analyses on the four retrieval scans. These analyses were conceptually similar to themain retrieval similarity analysis, only conducted

for spheres centered around each voxel in the brain instead of targeted ROIs. First, correlations between overlapping and non-over-

lapping trials were computed in each participant’s native space. For each retrieval trial, a sphere with a 3-voxel radius was moved

through every voxel throughout the brain (64 voxels per sphere). In spheres where at least 32 voxels were situated within the brain,

voxels in the sphere were extracted and reshaped into a vector. Then, for each sphere, each the pattern corresponding to each

retrieval trial was correlated with all retrieval patterns of trials studied with the same scene, and all retrieval patterns of trials studied

with a different scene. These correlations were averaged to create a measure of overlapping and non-overlapping similarity for each

trial. Thesemeasures were assigned to themiddle voxel within each sphere, and then averaged across trials, resulting in whole-brain

maps of overlapping and non-overlapping similarity for each participant at each retrieval period. As with the ROI analysis, only trials

whose objects were correctly recognized and whose associated scenes were remembered with high confidence were included, and

only correlations of trials across runs were considered.

The resulting Fisher-transformed maps were aligned to MNI space with the same set of transformations used for the univariate

retrieval analyses. Because the increased spatial blurring of the maps, caused by computing similarity across highly overlapping

spheres, group-level statistics were conducted using FSL’s randomize function. Reported clusters were identified using

Threshold-Free Cluster Enhancement (TFCE) and were controlled for family-wise error rate (p < 0.05).

Rest connectivity analysis
The rest scans were used to measure encoding-related changes in functional connectivity, as indexed by low-frequency correlations

between ROI pairs (Albert et al., 2009; Tambini et al., 2010; Tompary et al., 2015). Preprocessed data from the four rest scans were

entered into separateGLMs tomodel nuisance signals. Aswith all other scans, 6motion regressors, their temporal derivatives, and stick

functions accounting for sudden headmovements were included. Additional regressors were included to account for nuisance signals

from white matter tissue and cerebral spinal fluid (CSF). To create these regressors, each participant’s MPRAGE was segmented into

separate masks comprising gray matter, white matter and CSF, using FSL’s FAST function. The gray matter and CSF masks were

aligned to each participant’s functional volumes and then eroded using FSL’s fslmaths function, ensuring that these masks did not

contain voxels that partially overlapped with gray matter. Then, the average time course across all voxels in each mask was extracted

from the preprocessed rest scans. These time courses were entered into each run’s GLM along with their temporal derivatives.

The residuals of these GLMs were bandpass-filtered, leaving signal ranging from 0.01 and 0.1 Hz, which is the frequency range

known to correspond to correlations between gray matter regions in functional neuroimaging data (Cordes et al., 2001). Then, the

average time-course for every volume in each rest runwas extracted for each ROI. These time courses were then correlated (Pearson

correlation), Fisher transformed, and entered into statistical tests.

Statistical tests
All correlations were Fisher transformed before being submitted to statistical tests. For the majority of group-level comparisons,

where there was sufficient data in each bin for each participant, repeated-measures ANOVAs and paired t tests were used to char-

acterize the data. These statistics were replicated using non-parametric permutation tests to account for the different numbers of

correlations that comprise the overlapping and non-overlapping similarity scores for each trial, and for the different numbers of trials

that were remembered and forgotten in the case of the ERS analyses. Three participants were excluded from all similarity analyses

due to an insufficient number (< 10) of remote memories that were both correctly recognized and whose scenes were remembered

with high confidence.

Trial-level relationships between similarity measures or between similarity and univariate activation were tested with mixed-effects

linear regressions using the lme4 package in R (http://cran.r-project.org/web/packages/lme4/). Significance was determined using

model comparisons, resulting in c2 values and corresponding p values, or with likelihood ratio tests. Intercepts and slopes for each

participant were specified as random effects, andmodel comparisons were conducted to determine which experimental variables, if

any, were included as by-participant random factors.
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Non-parametric tests of retrieval similarity
Each trial’s overlapping similarity and non-overlapping similarity consisted of an average measure computed across pairwise corre-

lations with patterns from different trials. The number of pairwise correlations for each trial varied over time and by memory perfor-

mance across participants. Because correlations were only computed between trials across different retrieval runs, each retrieval

trial was correlated with up to 8 patterns from overlapping trials and up to 24 patterns from non-overlapping trials, depending on

how many of those trials were remembered with high confidence. To ensure that the variability in the number of correlations used

for each trial cannot explain the interaction between overlap and time relating to retrieval similarity, we developed two control

analyses.

First, we computed a permutation test by creating a null distribution of retrieval similarity for each participant, while retaining the

number of comparisons entered into each trial’s overlapping and non-overlapping similarity measure. To do this, we shuffled each

run’s vector of patterns across all trials within the run, such that each trial’s pattern was assigned to a different trial’s scene andmem-

ory status. We repeated this procedure 10,000 times per participant and re-computed overlapping and non-overlapping similarity for

each HC correct trial at each permutation. These values were averaged across trials for each participant, resulting in null distributions

of overlapping and non-overlapping similarity for each retrieval period. The values were then subtracted to create a null distribution of

the difference between overlapping and non-overlapping similarity. We then calculated the true difference in overlapping and non-

overlapping similarity for each participant and computed the z-score of the true difference relative to that participant’s distribution of

shuffled differences. We then submitted the z-scores to t tests against zero for each retrieval session, where a reliable difference

above zero indicates that across participants, the true difference between overlapping and non-overlapping similarity is greater

than the shuffled distributions across participants.

Second, we developed a sub-sampling procedure to reduce the number of comparisons used to calculate non-overlapping sim-

ilarity to match the number used to calculate overlapping similarity for each participant. Specifically, for each participant and retrieval

session, the number of comparisons originally used to compute overlapping similarity for a given trial was identified, and then the

same number of non-overlapping trials were randomly drawn to compute non-overlapping similarity. This procedure was repeated

10,000 times to compute a distribution of non-overlapping similarity on that trial. These distributions were averaged across trials

separately for recent and remote retrieval, resulting in a distribution of non-overlapping similarity for each participant at each

time-point. Then, each participant’s true overlapping similarity score was computed as a z-score relative to that participant’s distri-

bution of non-overlapping similarity. These z-scores were submitted to pairwise t tests against zero for each retrieval session, where

a significant difference from zero indicates that true overlapping similarity is robustly different than the distribution of non-overlapping

similarity.

Non-parametric test of ERS
When computing ERS as a function of remote memory in the right hippocampus, the number of HC correct and incorrect trials

entered into the analysis varied across participants. We implemented a non-parametric test to confirm that the variability in the num-

ber of trials used to compute ERS across participants could not explain the modulation of ERS by memory. We generated null dis-

tributions of ERS for each condition within participants by shuffling each participant’s memory performance across runs 10,000 times

and re-computing ERS separately for HC correct and incorrect trials. We then computed the z-score of each participant’s true dif-

ference in ERS between HC correct and incorrect trials, relative to the shuffled distribution of differences. This z-score was submitted

to a t test against zero, where a significant difference above zero would indicate that the true difference in ERS between HC correct

and incorrect trials is reliably greater than the difference computed using shuffled values.
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