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Everyday life consists of a continuous stream of information,

yet somehow we remember the past as distinct episodic

events. Prominent models posit that event segmentation is

driven by erroneous predictions about how current experiences

are unfolding. Yet this perspective fails to explain how memories

become integrated or separated in the absence of prior

knowledge. Here, we propose that contextual stability dictates

the temporal organization of events in episodic memory. To

support this view, we summarize new findings showing that

neural measures of event organization index how ongoing

changes in external contextual cues and internal representations

of time influence different forms of episodic memory.
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Introduction

“Time is a sort of river of passing events, and strong is its
current; no sooner is a thing brought to sight than it is
swept by and another takes its place, and this too will be
swept away.” -Marcus Aurelius (c. 161–180 AD)

For millennia, the notion that moment-to-moment

experiences unfold like a flowing river has been central

to our conceptualizations of time. Yet while we experi-

ence the world through a constant stream of information,

we usually remember those experiences as being more

discrete and discontinuous, broken down into individual

episodes, or memories. This raises two fundamental yet

often unasked questions: What makes an episode in episodic
memory? How do we represent time and extract information
about events embedded within it?
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Prior memory research has largely focused on examining

the processes that contribute to successful encoding of

individual trial information, such as single images or

single item-context associations. In the real world, how-

ever, more complex modes of memory clustering are

necessary to derive meaning from past experiences.

Growing evidence indicates that such memory organiza-

tion has reliable consequences not only for later event

recall and recognition of individual items [1–4] but also

for how the temporal, or sequential, aspects of events are

remembered [5��,6,7,8�,9,64]. Thus, discerning the cog-

nitive and neural processes by which we organize, struc-

ture, and remember events is essential to promoting a

deeper understanding of how our memory systems con-

tribute to adaptive behavior.

Prominent models of event cognition posit that ongoing

sensory inputs are segmented into events when our

expectations about the current environment conflict with

what is happening, leading to prediction errors [10,11].

From this perspective, prior knowledge enables infer-

ences to be made about the structure of specific

sequences of information, or events [12]. For instance,

participants tend to agree on natural breakpoints in videos

of familiar everyday activities, such as washing a car [10].

However, this prediction error account of event segmen-

tation is incomplete (Box 1). While prior experience may

call to mind and reinforce the temporal structure of

familiar events, we cannot rely fully on predictions gar-

nered from past experiences to parse novel sequences of

information. Further, recent empirical work shows that

foreshadowing impending event shifts during reading

comprehension still leads to slower reading times, sug-

gesting that expectations do not prevent event segmen-

tation processes from occurring [13]. Most segmentation

and memory studies have also focused overwhelmingly

on recognition memory [4,14–17]. In so doing, they

obscure the simple fact that episodic memories are pri-

marily characterized by their rich sequential and contex-

tual information [18].

In this short review, we argue that fluctuations in contex-

tual stability — including changes in stimulus features,

goal states, or internal representations of time — funda-

mentally shape the temporal organization of events in

episodic memory. To support this view, we summarize

evidence that even the simplest transitions between con-

texts during sequence learning modulate behavioral and

neural encoding/retrieval processes in ways that can both

form and distinguish unique episodic events across time.
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Box 1 Prediction . . . Error? Re-thinking the role of prediction in

event memory.

Influential models of event perception posit that segmentation is

driven by a mismatch between the current event model, or

working memory representation of what is happening, and

actual sensory inputs [10,11]. However, this account has not been

substantiated with empirical data, with interpretations being drawn

from reverse inference [56]. Furthermore, event segmentation has

been shown repeatedly to occur without explicit prediction

errors. For instance, there is evidence that event structure can

emerge from predictive temporal clustering in the absence of

surprise or prediction errors [23��]. As described in the main text,

event structure emerges simply through context changes during

novel episodic encoding and therefore do not require expectations

about how new experiences will unfold overtime [6]. Moreover, there

are indications that event-model updating still occurs even when

event shifts in a text narrative are not surprising [13]. While more

research on this topic is needed, we favor the view that prediction

errors may be one among many cognitive or perceptual processes

(e.g. memory updating, conflict, task switching etc.) that

determine event clustering based on moment-to-moment changes

in external or internal contextual states [57,58].

1 This temporal binding effect is seen for relatively short sequences of

information. On the other hand, there are indications that people may

rely more on item memory strength rather than associative information

to make accurate recency discriminations for two items from longer

sequences (see [21] for Discussion).
Encoding new memories of distinct sequential
events
If one accepts the premise that individual episodic events

contain sequential representations that are strongly inte-

grated while, at the same time, separated and distinguish-

able from adjacent events, one can then ask how this

structure emerges. Theoretically, unified sequential

events could emerge from a continuous influx of infor-

mation through the integration of sequential representa-

tions with a shared context, the separation of items that

span a change in context, or both. Recent inquiry along

these lines has led to a wealth of new behavioral and brain

data suggesting that contextual stability and change con-

tribute to the extraction of discrete episodic events from

ongoing experience.

In the first empirical test of these hypotheses, Ezzyat and

Davachi used narrative stimuli that described a protago-

nist completing an everyday activity [19��]. Even though

the activities were familiar to participants, the transitions,

or boundaries, between adjacent sentences were manip-

ulated by inserting a simple three-word phrase that con-

veyed a short or long passage of time: either ‘a moment

later’ or ‘A while later’. This simple phrase had significant

consequences on later memory. Namely, participants

were significantly less likely to recall information across

an event boundary than they were to recall successive

sentences within an event. Critically, this was the case

even though the absolute time that passed during reading

was the same.

Consistent with evidence from the event comprehension

literature [20–22], these findings provided important

behavioral evidence that discrete episodic memories

emerge from our interpretation of the pauses, breaks,

and changes in event context. In this same study, FMRI
www.sciencedirect.com 
was used to determine whether neural measures of

within-event integration and/or across-event separation

determined individual differences in memory binding

across time. We found that memory integration perfor-

mance was associated with gradual increases in medial

temporal lobe (MTL) cortex, ventral striatum, and medial

PFC activation across the course of an event. On the other

hand, event separation, or reduced memory binding

across events, was associated with reduced univariate

activation in lateral PFC and middle temporal gyrus at

boundaries.

Neural mechanisms supporting within-event
memory integration
In the moment of experiencing something new, what

information does the brain use to guide sequential inte-

gration? Preserving sequential order information appears

to rely on binding sequential items to a shared context,

such as similar perceptual/conceptual features or task set

[6]. Supporting this idea, temporal memory has now

repeatedly been shown to be better for information

experienced within a context compared to information

experienced across contexts [5��,7,8�,9,19��], even though

the absolute amount of time passed is the same

(Figure 1b).1

Neuroimaging data have linked these mnemonic effects

to greater similarity in hippocampal activation patterns

across time [5��]. For instance, DuBrow and Davachi had

participants learn a list of images grouped into event

sequences separated by a category change (e.g. faces or

objects; Figure 1a). After encoding, temporal memory

was tested. An index of contextual stability was formu-

lated by considering the amount of representational

change across time. We found that encoding stability

in hippocampal multivariate patterns between the two

tested items was related to temporal memory accuracy,

with more stable encoding patterns predicting better

recency memory. Critically, hippocampal pattern stabil-

ity was a significantly better predictor of temporal mem-

ory than the univariate hippocampal activation during

study of each item. This finding suggests that the tem-

poral stability of hippocampal representations helps

determine whether sequential links are preserved in

memory. Although beyond the scope of this paper, there

is also evidence that neural oscillations play an important

role in integrating sequential representations within

events (Box 2).

Extending the findings from Ezzyat and Davachi, recent

studies suggest that the medial prefrontal cortex (mPFC)
Current Opinion in Behavioral Sciences 2017, 17:186–193
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Figure 1

Encoding-related and retrieval-related patterns of hippocampal activity relate to the preservation of sequential memory representations across

time. (a) Participants viewed a stream of celebrity faces or objects in which there were intermittent category switches, or event boundaries. Having

participants form a meaningful narrative between items encouraged temporal order encoding. Later, participants performed a recency

discrimination test between two items from the same category that either spanned a boundary (‘Switch’) or did not (‘No Switch’). (b) Recency

memory for item pairs with an intervening boundary was impaired relative to item pairs that did not contain an intervening boundary. (c) A pattern

classifier was used to quantify evidence of intervening item reactivation (i.e. the three encoding items that had been shown between the two

recency test items) during memory retrieval. (Left panel) If faces evidence simply reflected the perceptual features of the probe items, there would

be equal face evidence across the two trial types from encoding. However, if intervening items were reactivated from memory during retrieval, the

prediction would be that face evidence would be greater for ‘no switch’ trials than ‘switch trials’ despite the perceptual inputs (faces) being the

same (right panel). (d) Supporting the latter prediction, the classifier identified significantly more evidence of intervening item patterns of activity

during retrieval for no-switch (e.g. 3 faces) versus switch trials (e.g. 2 objects and one face), despite the category of images (e.g. faces) being the

same for both conditions during retrieval. *p < .05.
may act independently and/or in concert with the hippo-

campus to facilitate temporal memory binding of contex-

tually related elements. For instance, mPFC is engaged

throughout the duration of a learned context [23��]. At

the functional network level, accurate versus inaccurate

serial recall for within-context sequential information
Current Opinion in Behavioral Sciences 2017, 17:186–193 
corresponds with enhanced vmPFC-hippocampal func-

tional connectivity at encoding [7]. Overall, these findings

dovetail with the idea that dynamic interactions between

the mPFC and hippocampus support temporal order mem-

ory [24,25] as well as the integration of sensory inputs into

bound, associative memories more generally [26].
www.sciencedirect.com
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Box 2 Theta-gamma phase coding as a mode of integration [64].

Another critical question is how the brain preserves memory for

sequential order within a specific event. Based on examination of

place cell firing in the hippocampus of rodents running in a maze, it

has long been theorized that a sequence of items can be repre-

sented along distinct phases of theta oscillations [59,60]. Recent

human work using MEG has provided evidence for theta-gamma

phase coding during encoding of six-item sequence [61]. Specifi-

cally, it was found that gamma power during each item peaked at a

distinct and consecutive phase of an underlying theta oscillation.

Furthermore, this structured phase coding relates to successful

temporal order memory for those sequences. However, several

issues remain unresolved. For example, it is unclear whether theta

phase oscillations reset at event boundaries and whether this relates

to sequential memory impairments observed across these

boundaries.
Maintaining contextual representations
preserves ongoing memory integration
Thus far, we have reviewed evidence that contextual

change reduces the sequential binding of representations.

Yet there are instances where we can bridge these transi-

tions in memory. Neuroimaging data suggest that

enhanced temporal stability in hippocampal representa-

tions preserves across-event sequential memory binding

[5��,27]. Furthermore, current data suggest that linking

memories across boundaries can be facilitated by encour-

aging active retrieval of prior representations during

encoding [5��,28]. Supporting this view, implicit memory

tests reveal that sequential representations are linked

together irrespective of boundaries when implementing

an associative encoding strategy [5��].

Memory integration processes therefore are not only

influenced by attending to sensory changes in the envi-

ronment but rather are also modulated by an individual’s

goal state (e.g. [9]). Current FMRI data indicate that

hippocampal retrieval mechanisms may contribute to this

form of active integration. For example, increased hippo-

campal activity at event transitions correlates with suc-

cessful serial recall across those transitions [7]. The fact

that this pattern did not relate to within-event recall

argues that hippocampal activation at event boundaries

may reflect retrieval processes targeted to reactivate the

just-encountered pre-boundary information. In turn, this

memory reactivation may facilitate memory binding

across the boundary. Consistent with this idea, prior

work suggests that the reactivation of just-encoded in-

formation is associated with increased hippocampal acti-

vation [16,62].

Studies using naturalistic movies have also revealed a

post-stimulus hippocampal ‘offset’ signal that predicts

gist memory for a just-seen movie clip [29–31] and

neural event reactivation in supramarginal gyrus during

free recall [32�]. While these studies did not explicitly

test across-event integration, a recent scalp EEG study

showed that boundary-triggered rapid replay of just-
www.sciencedirect.com 
encoded events predicts participant’s later sequential

recall across those boundaries [63]. This finding suggests,

beyond simply enhancing within-event binding for just-

encoded information, boundary-triggered neural replay

can also bridge boundaries in memory, at least under

certain conditions (e.g. when using an associative encod-

ing strategy).

Past work also shows that activation in lateral prefrontal

cortex (PFC) is important for encoding of temporal order

information across event boundaries [7,19��]. Like the

hippocampus, lateral PFC has been implicated in repre-

senting temporal contextual information [23��,25,33], and

facilitating relational memory binding across small gaps in

time [34–38]. Lesion evidence also shows that the lateral

PFC contributes to temporal order memory under con-

ditions when top-down attentional control is required

[39]. Taken together, these data support the notion that

boundaries can be bridged in memory using strategic

retrieval, as indexed by both hippocampal and lateral

PFC activation at boundaries.

Evidence for ‘unitization’ of episodes in
memory
There are multiple brain mechanisms that might support

better recall of within-event sequences compared to

across-event sequences. One possibility is that a retrieval

cue may lead to the reinstatement of the event context

(e.g. temporal information) that then, in turn, facilitates

access to other event information. In fact, there is strong

evidence that context reinstatement during retrieval

facilitates the recall of neighboring items [40]. While

not mutually exclusive, another possibility is that once

an episodic sequence is formed, the sequential links

between items may have been strengthened such that

when shown one item, the sequence itself is reinstated

or replayed.

To test these hypotheses explicitly, DuBrow and Davachi

trained a classifier to distinguish between faces and objects.

This classifier was then applied to memory retrieval trials

where participants were shown two probe stimuli from the

same category and asked to report which item appeared

more recently. Critically the two probe stimuli during

encoding were always separated by three intervening items

during encoding, and were either from the same ‘event’ or

spanned an event boundary (Figure 1c). The classifier

output revealed a higher level of face evidence for a face

retrieval trial that was from a ‘face event’ during encoding

compared to a face retrieval trial that contained intervening

objects (Figure 1d). Importantly, the difference in classi-

fier output could not be driven by perceptual information,

as these trial types during retrieval were perceptually

identical.

These results strongly suggest that the intervening study

items are reinstated during temporal recency judgments.
Current Opinion in Behavioral Sciences 2017, 17:186–193
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However, one could argue that the classifier was also

sensitive to the reinstatement of a more general face

‘context’ associated with each event. To more directly

address this, a behavioral experiment was performed that

was nearly identical to the original study, except partici-

pants performed an old/new memory judgment on single

items from the study list after each recency discrimina-

tion. Critically, those test items were either intervening

items from the sequence or were preceding items (i.e.

within the same category). We found that ‘old’ recogni-

tion decisions were made significantly faster for interven-

ing items compared to a preceding item from the same

visual category [5��], providing behavioral evidence for

the reinstatement of intervening items from a sequence

during temporal memory judgments. Interestingly, this

finding aligns with recent evidence that lateral PFC and

hippocampal pattern stability carries positional code

information during encoding that is also reinstated at

retrieval [41].

Event reinstatement during repeated
encoding
Unlike novel, or episodic, sequential encoding, we can

use prior knowledge to orchestrate sequential memory

integration for familiar events. This topic has been

reviewed elsewhere [6], but briefly, it has been shown

that as distinct sequence information becomes more

familiar with learning, a temporal prediction signal is

evident such that hippocampal activation patterns

become more temporally correlated with repetition

[42,43]. One function of this hippocampal forward pre-

diction, or pattern completion, mechanism may be to

preserve stable contextual signals that promote sequen-

tial integration in memory. Indeed, human fMRI studies

have shown that multivoxel hippocampal activation pat-

terns become more dissimilar between separate well-

learned sequences/pairs compared to within well-learned

sequences/pairs, suggesting that individual sequences

become more distinct after learning [43–45]. Importantly,

these data support the idea that there is sequential

‘unitization’ of discrete event memories during repeated

learning. Moreover, this hippocampal mechanism may be

similar to pattern completion processes that are engaged

during intervening item reactivation at retrieval (e.g.

[5��]).

Temporal drift as a mode of event separation
People tend to have better memory for information that

appears close together in time [46]. According to temporal

context models, mnemonic clustering effects arise from

successive stimuli becoming associated through a slowly

evolving temporal context signal [47]. In this way, tem-

porally adjacent items become integrated through their

transient contextual overlap, whereas items appearing

farther apart in time are more likely to become separate

memories due to less contextual overlap. Supporting this

model, electrophysiological recordings in rodent have
Current Opinion in Behavioral Sciences 2017, 17:186–193 
linked slowly evolving ensemble activity in hippocampal

subregion CA1 to successful temporal order memory [48].

But what happens to this contextual signal at event

boundaries? An extension of these models proposes that

a sudden disruption or shift in active contextual repre-

sentations isolates different sets of list items [49]. In turn,

separated items tend to cluster more closely together in

free recall, invoking the integration and separation of

contextually distinct events. Building on this work, recent

computational modeling evidence shows that speeding

up a time-varying contextual signal at event boundaries

can account for behavioral findings of impaired temporal

memory across context transitions [8�].

Fluctuations in the rate of temporal signal drift may also

relate to observations that event boundaries lead to exag-

gerated estimates of event sequence duration [50]. For

instance, items appearing within the same scene context

were remembered as ‘closer’ together than items span-

ning a scene change [27], even though the same amount

of objective time had passed. Like sequential integration

[5��], these apparent time distortions in memory were

linked to greater hippocampal pattern stability during

encoding, with more stability relating to judgments of

closer temporal proximity [27]. More recent neuroimag-

ing evidence showed that retrospective judgments of

time duration were associated with reduced entorhinal

cortex pattern similarity between two clips during encod-

ing [51].

Given that neural pattern stability predicts both time

compression and within-event memory integration, these

studies suggest an intimate relationship between mne-

monic representations of time and memory organization

of distinct events. The nature of this relationship, how-

ever, is somewhat unclear. On the one hand, by propelling

temporal signals further adrift, contextual shifts may

benefit temporal order memory by linking stimuli to more

distinct temporal contextual representations in the hip-

pocampus [48], lateral prefrontal cortex [52], and/or

medial prefrontal cortex [53]. On the other hand, by

dilating temporal representations to create the illusion

of greater event separation, rapid temporal signal changes

at event boundaries may lead to impaired temporal mem-

ory binding, as other empirical [5��,7,8�,9] and theoretical

[49] work suggest.

Open questions

Although the studies reviewed here have advanced our

understanding of how episodic memories emerge from

continuous experience, several important questions

remain. First, studies in the event cognition literature

use a diverse range of stimuli, including text narratives,

video clips, and item sequences to probe perception and

memory of event structure. Moreover, the way event

boundaries are defined differs from study-to-study,
www.sciencedirect.com
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leaving open whether the effects of perceptual or task

switches on sequence memory differ from the effects of

transitioning from one daily activity to another. From the

perspective that shared context is critical for event extrac-

tion, we’d still expect any form of contextual change to

influence different aspects of episodic memory in a simi-

lar manner. Even so, additional work is needed to recon-

cile potentially disparate findings concerning the mecha-

nisms that mediate the impact of context on episodic

memory organization.

Second, in the real world, event comprehension does not

necessarily rely on preserving the precise order of sequen-

tial representations, which in many cases may be fragile.

Instead, people’s recall of past experiences is usually
Figure 2

Schematic diagram highlighting core mechanisms by which contextual stab

memories. (a) During an experience, the continuous influx of sensory inputs

according to their shared context. Likewise, discrete episodes are distinguis

context [5��,6,7,8�,9,19��,64]. (b) Hypothesized model of information accum

change, such as moving from a park to a city street, the active event repres

context. These contextual shifts serve as ‘event boundaries’ that impair me

This hypothesized effect of shared context on within-event memory integrat

focuses on prediction errors leading to enhanced encoding of boundary info

indexes contextual stability and the integration of information across time [5

medial PFC (not shown) supports within-event integration during familiar or 

preserve sequential links in memory, active retrieval processes in the hippo

information [7,19��]. (d) When we recall past experiences, they retain their t

[5��]. However, even when the passage of time was the same, we subjectiv

farther apart time, whereas within-event information is remembered as occu

www.sciencedirect.com 
strong for sequences of information containing causal

structure [54]. Interestingly, recent work also shows par-

ticipants rarely detect mis-ordered portions of videos of

daily activities [55], reinforcing the idea that prediction

errors may not be necessary for perceiving or compre-

hending event structure. Addressing these issues will

provide a deeper understanding of episodic memories

help us derive meaning from everyday experiences.

Conclusion
A growing number of studies suggest that moment-to-

moment changes in context dynamically modulate the

separation and integration of sequential representations

to form discrete episodic memories. Exciting new

research implicates the hippocampus and PFC as the
ility and transitions determine the temporal structure of episodic

 and our internal thoughts are integrated into coherent events

hed and separated from temporally adjacent information by shifts in

ulation across stable contexts. When contextual inputs suddenly

entation is dropped and information accumulation begins for the new

mory integration yet, in so doing, facilitate memory separation in time.

ion is distinguished from Event Segmentation Theory [10], which

rmation. (c) The stability of activity patterns in the hippocampus
��,42]. Increased communication between the hippocampus and

novel experiences [7]. On the other hand, when one’s goal is to

campus and lateral PFC trigger the reinstatement of pre-boundary

emporal structure and remain separated as distinct episodic events

ely remember information spanning context changes as occurring

rring closer together [27].

Current Opinion in Behavioral Sciences 2017, 17:186–193
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critical brain regions supporting these processes, with

potentially dissociable roles for PFC sub-regions: whereas

temporal stability in hippocampal activation patterns and

connectivity with medial PFC appear to promote within-

even integration, hippocampal and lateral PFC activation

at boundaries appears to promote linking memories across

discrete events (Figure 2). Together these findings sug-

gest that neural measures of event organization are a

powerful tool for understanding how fluctuations in exter-

nal and internal contextual states during an experience

modulate mnemonic integration and separation processes

across time.
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62. Öztekin I, McElree B, Staresina BP, Davachi L: Working memory
retrieval: contributions of the left prefrontal cortex, the left
posterior parietal cortex, and the hippocampus. J Cogn
Neurosci 2009, 21:581-593.

63. Sols I, DuBrow S, Davachi L, Feuntemilla L: Event boundaries
trigger rapid memory reinstatement of the prior event to
promote their representation in long-term memory. Curr Biol (in
press).

64. Heusser A, Ezzyat Y, Shiff I, Davachi L: Perceptual boundaries
cause mnemonic trade-offs between local boundary
processing and across-trial associative binding. J Exp Psychol
Learn Mem Cogn. (in press).
Current Opinion in Behavioral Sciences 2017, 17:186–193

http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0460
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0460
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0465
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0465
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0465
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0470
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0470
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0475
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0475
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0475
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0480
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0480
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0480
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0480
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0485
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0485
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0485
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0485
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0490
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0490
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0490
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0490
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0495
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0495
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0495
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0495
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0500
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0500
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0500
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0505
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0505
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0505
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0505
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0510
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0510
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0510
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0515
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0515
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0515
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0520
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0520
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0520
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0525
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0525
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0525
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0530
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0530
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0530
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0535
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0535
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0540
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0540
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0545
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0545
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0545
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0550
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0550
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0550
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0555
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0555
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0560
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0560
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0560
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0560
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0565
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0565
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0565
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0570
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0570
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0575
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0575
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0575
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0580
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0580
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0585
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0585
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0585
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0590
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0590
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0590
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0595
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0595
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0600
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0600
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0605
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0605
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0605
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0610
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0610
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref0610
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref1000
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref1000
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref1000
http://refhub.elsevier.com/S2352-1546(17)30117-1/sbref1000

	The ebb and flow of experience determines the temporal structure of memory
	Introduction
	Encoding new memories of distinct sequential events
	Neural mechanisms supporting within-event memory integration
	Maintaining contextual representations preserves ongoing memory integration
	Evidence for ‘unitization’ of episodes in memory
	Event reinstatement during repeated encoding
	Temporal drift as a mode of event separation
	Open questions

	Conclusion
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


