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Over 40 y of accumulated research has detailed associations between neuroimaging
signals measured during a memory encoding task and later memory performance, across
a variety of brain regions, measurement tools, statistical approaches, and behavioral
tasks. But the interpretation of these subsequent memory effects (SMEs) remains
unclear: if the identified signals reflect cognitive and neural mechanisms of memory
encoding, then the underlying neural activity must be causally related to future memory.
However, almost all previous SME analyses do not control for potential confounders
of this causal interpretation, such as serial position and item effects. We collect a large
fMRI dataset and use an experimental design and analysis approach that allows us to
statistically adjust for nearly all known exogenous confounding variables. We find that,
using standard approaches without adjustment, we replicate several univariate and
multivariate subsequent memory effects and are able to predict memory performance
across people. However, we are unable to identify any signal that reliably predicts
subsequent memory after adjusting for confounding variables, bringing into doubt
the causal status of these effects. We apply the same approach to subjects’ judgments
of learning collected following an encoding period and show that these behavioral
measures of mnemonic status do predict memory after adjustments, suggesting that it
is possible to measure signals near the time of encoding that reflect causal mechanisms
but that existing neuroimaging measures, at least in our data, may not have the precision
and specificity to do so.
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What are the neural mechanisms that cause the encoding of lasting memories? The
dominant method for identifying successful-encoding–related signals using noninvasive
neuroimaging is the subsequent memory paradigm (1). This analysis approach compares
neuroimaging signals, collected while a subject processes several items, based on later
behavioral memory performance (e.g., comparing signals from items that were later
remembered to those that were later forgotten). A signal that consistently differs between
subsequently remembered and forgotten items suggests a link between the particular
underlying activity and memory encoding. These differences, known as subsequent
memory effects (SMEs), reliably appear in a number of brain regions, using a variety of
memory tasks, imaging technologies and statistical techniques (1–3). Researchers have
theoretically linked particular SMEs to specific latent cognitive or neural mechanisms of
memory encoding such as attention, fatigue, representational fidelity, degree of associative
binding, or match to personal schemas (4–14). In addition, SMEs have distinguished
between multiple cognitive theories of memory encoding and learning (15, 16) and
have been used practically to guide neural stimulation or optimization of learning for
improving memory (17, 18).

While identifying signals that are associated with memory performance can be
of interest itself, claims that the neural activity underlying SMEs reflect encoding
mechanisms require that the activity be causally involved in encoding. For activity to be
causal encoding activity, it means that, if we were able to manipulate the activity during
the encoding of an event while holding all other external (i.e., nonneural) memory-related
factors constant, memory performance would be better, on average, in one condition than
the other.* However, identifying causal encoding activity experimentally is exceedingly
difficult, if not impossible, because of our limited ability to precisely manipulate neural
activity, particularly in humans where there are additional ethical constraints. Therefore,
our best hope is to learn as much as we can about causal encoding activity from large-scale
observational data, such as from neuroimaging studies. We argue that rather than avoid
using causal language altogether to describe the results of observational studies, being
upfront about the causal goal can allow us to evaluate to what extent our strategies for

*This definition does not hold neural activity constant because, for most signals, some neural activity is downstream and
therefore would be a posttreatment variable which might confound causal identification (19, 20).
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identifying causal activity meet that standard (21–23). In some
cases, a simple association, like an SME, can be interpreted
causally, such as when there are no confounding variables that
affect both the effect (memory performance) and the cause (neural
activity). A key difficulty in the causal interpretation of SMEs
is that several stimulus-, task- and context-related variables are
known to do exactly that. For instance, the concreteness of a word
is known to affect both a word’s probability of recognition and
recall on a list (24–26) as well as neural activity in several brain
regions during visual presentation (27, 28). It is possible that
some of this neural activity is involved only in word processing
and does not directly affect the memory quality. But, in typical
sets of word stimuli, signals reflecting this activity will vary with
memory performance and thus be classified as a subsequent
memory effect, regardless of their involvement in the encoding
process.

Beyond concreteness, stimuli (including images, words, and
videos) have also been shown to vary in their intrinsic memora-
bility, i.e., the average performance for an item in a particular
memory task in the population (29–34). The concern that
confounding variables exist in subsequent memory analyses is
not just theoretical: Memorability has been shown to drive a
significant amount of neural activity in memory tasks during both
encoding (35) and retrieval (36), including in regions typically
also associated with SMEs. Therefore, analyses that rely on simply
comparing signals between remembered and forgotten trials do
not allow for clearly distinguishing between activity that is likely
to be causal and activity that merely correlates with memory-
predictive features of the stimulus or task.

Does this mean that progress toward uncovering the causal
mechanisms for memory encoding from neuroimaging data is
hopeless? We believe not. In the social sciences, causal claims are
routinely made from observational data, using various approaches
to measure and adjust for confounding variables (37–41).

The implicit causal model (SI Appendix) in past work on the
SME assumes that a stimulus presentation is an exogenous event
that initiates a causal chain leading to later memory behavior. This
chain has intermediate steps that are neural, some of which are
measurable (with some noise) using modern imaging techniques.
However, we often do not measure all of these processes or at
least not with significant precision, meaning that it is possible
that none of the measured neural signals in any one study is
part of the causal chain. Since it is difficult currently to directly
manipulate the neural responses themselves, we can attempt to
identify which of our neural signals are on the causal pathway
using observational analyses. The standard SME demonstrates
that some neural signals are correlated with memory behavior.
If this neural activity is part of the causal chain, or otherwise
influences variables that are on the chain, this causal model
suggests that adding it as a predictor to all features of the
initiating event that determine memory performance (such as
the various item, task, and context variables) should increase
the ability to predict memory (because it is closer in the chain
to the final effect); if it is not part of the causal chain, then
adding it will not increase prediction. This approach allows
us to assess evidence for a causal role of the neural activity
against the alternative hypothesis that the neural activity reflects
stimulus-evoked activity that is simply correlated with memory
performance on average. As emphasized by the causal model
described here and in SI Appendix, some of the causal activity may
be downstream from confounding variables. For instance, some
neural activity that reflects concreteness may be on the causal
pathway. However, to obtain evidence of this, we would need to

observe that variation in this signal (and presumably the subject’s
subjective impression of a word’s concreteness) predicts memory
after adjusting for concreteness as measured in the population. If
it does not, then the signal may just be a correlate of concreteness
without being on the causal pathway to successful memory.

Two recent efforts, ref. 35, using fMRI with a visual recog-
nition task, and ref. 42, using scalp EEG with a verbal free
recall task, have attempted to investigate subsequent memory
effects while statistically adjusting for item-level memorability
and, in the case of ref. 42, effects of serial position, a task-level
variable that is well known to affect probabilities of recall (43, 44).
Both papers found that the adjusted subsequent memory effects
appeared in a more limited set of brain regions (35) and had
diminished predictive power (42). However, as mentioned above,
there are many other known effects besides item memorability
and serial position that affect the probability of successful
encoding such as the distinctiveness or semantic similarity of
the item relative to items studied nearby (45–48). Indeed, the
probability of remembering an item in a particular serial position
may depend on the item itself. Therefore, even some of the
adjusted subsequent memory effects may in fact be confounded
by stimulus, task, and context effects that drive both causal
encoding activity and activity that is unrelated to encoding
processes.

A major challenge, then, in identifying observational neu-
roimaging signals that plausibly reflect causal encoding activity is
appropriately measuring all of the confounding variables. In every
subsequent memory study we are aware of, item presentation
is randomized to aid in generalizability. However, from the
perspective of dealing with possible confounding factors, this
presents a combinatorial problem. Estimating the total effect
of all exogenous factors that affect memory, including stimulus
variables, task variables (such as serial position), contextual effects
of a stimulus’ relationship to neighboring stimuli, and their
possible interactions requires either strong assumptions about
the functional form of these effects or an immense amount of
data collection to estimate it nonparametrically.

In this study, we circumvent this combinatorial challenge
by collecting a unique fMRI dataset of subjects performing a
paired-associates verbal memory task where all subjects view the
exact same items in the exact same order. This relatively unusual
design, inspired by recent studies that measure brain responses
across people to a single common experience (e.g., watching the
same movie, 49, 50), allows us to precisely quantify the total
effect of the experimenter controlled exogenous variables in our
task.

Through a formal causal analysis (SI Appendix), we can
see that this adjustment approach rules out activity that is
associated with memory (an SME) but unlikely to be causally
involved in encoding processes. Unfortunately, we cannot rule
out that activity correlated with memory even after adjusting for
confounding is not merely downstream from unmeasured activity
that is truly causally involved in encoding (51). However, we
argue that obtaining signals that measure activity downstream
of causal activity is still valuable as they measure memory-
predictive variables that may not be available from behavioral data
alone. Therefore, this represents an advance over the unadjusted
SME as identified signals provide a more solid foundation
for advancing cognitive theory as well as applied goals such
as building computer-aided systems to improve learning. In
addition, it allows for using the relatively cheap observational data
to more precisely target plausible sites for expensive stimulation
studies. Following the psychometric and epidemiology literature
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(52–56), we define a slightly weaker standard of an indicator of
causal encoding activity or ICEA, that is, activity that is either
on the causal pathway to encoding (i.e., causal encoding activity)
or downstream from such activity.

Leveraging the above approach, the goal of the current study is
to investigate whether several fMRI subsequent memory signals
proposed in the literature appear to measure ICEA. While
early fMRI studies on subsequent memory effects focused on
demonstrating differences in univariate activation (Activity)†

(1, 2), subsequent work expanded the types of signals studied
to include multivariate patterns (3, 57). Deriving these signals
involves comparing the spatial pattern of voxel activation across
time points or across people commonly known as representational
pattern similarity (58, 59), and the ability of these measures
to predict memory in a variety of tasks has been extensively
documented in the past decade (3). In general, we can categorize
these signals into three classes: the pattern similarity of repeated
presentations of the same item (Item Pattern Similarity or IPS)
(15, 60–64), the pattern similarity of presentations of an item to
other items studied in the same encoding period (Global Pattern
Similarity or GPS) (35, 65–70), and the pattern similarity of
the same presentation of an item to other participants in a study
(Inter–Subject Pattern Correlation or ISPC) (49, 50, 71). To
test these four signal types in a variety of brain regions while
avoiding losing power due to large multiple comparisons correc-
tions, we use a predictive modeling approach, testing whether
many signals jointly predict recall performance in a regularized
regression (72).

In sum, our approach to identifying fMRI features that
measure ICEA combines a highly controlled memory task which
allows for precise measurement of confounding variables with
predictive modeling approaches that allow us to increase our
power to estimate potentially small associations. Aside from
presenting items in exactly the same order, our experiment
has several other unique features. One particularly interesting
application for causal encoding activity might be to track learning
of novel information in an educational setting. It may be possible
to use measurements of ICEA to adjust teaching plans in a
way that will facilitate faster learning, as in automated tutoring
systems, e.g., ref. 73. We therefore use a novel-language learning
task in which participants learn associations between English
words and their Lithuanian translations (74, 75). To allow
for measuring within-item pattern similarity, our experiment
(Fig. 1) consists of presenting 45 paired associates five times each
during an initial encoding session. This increases overall memory

Fig. 1. In Phase 1, in the fMRI scanner, subjects first completed a paired
associates learning task in which an English word and a Lithuanian word
were simultaneously presented on the screen. In between trials, subjects
completed an odd–even judgment about a series of numbers in order to
prevent rehearsal. After the learning session, subjects made a judgment of
learning about each of the paired associates outside of the scanner. In phase
2, 72 h after phase 1, subjects completed a cued recall test in which they were
presented with a Lithuanian word and typed in the corresponding English
word.

†Descriptions of components of models used in results figures are indicated in the main
text using bold font.

A B

Fig. 2. (A) shows the distribution of word pair memorabilities (percent of
subjects remembering the pair in a cued recall test) across all 45 word pairs.
(B) shows the distribution of subject abilities over all 57 subjects.

accuracy and the robustness of the item-level measurements. As
a comparison to fMRI measures of encoding, we additionally
ask participants to provide subjective “judgments of learning”
(JOLs), a common behavioral measure related to encoding con-
fidence and metacognition (76–78), for each studied word pair.
Finally, participants are tested for their cued recall performance
3 d after the initial encoding, ensuring that we are measuring
signals of durable memory encoding.

We provide evidence that many previously identified SME
signals are able to robustly predict memory formation in our task
even in entirely held-out subjects. However, we also show that
there is very weak statistical evidence that these signals reflect
neural activity that we can claim is causally involved in memory
encoding after accounting for possible confounds. Finally, we
use the same framework to determine whether participants’ own
judgments of learning are related to ICEA. Repeating our analysis
approach, we show that, perhaps surprisingly given the long delay
between study and test, it is in fact possible to measure signals
(e.g., subjects’ behavioral responses) at encoding time that do
reflect the quality of encoding processes. However, current fMRI
indices of memory encoding do not yet have the required level
of precision and specificity to measure them reliably.

Results

Behavioral Performance. We quantified both the average per-
formance of each of 57 subjects across all 45 word pairs (me-
dian = 37%, SD = 15%) and the proportion correct for each word
pair across all subjects (median = 33%, SD = 26%). Because of the
design of our study, these memorability measures correspond to
the proportion correct for a word pair in a particular sequence in
the list that every subject in our study observed. The distributions
of word pair memorabilities and subject memory abilities are
shown in Fig. 2. To gain a further sense of how much of
the variance in memory performance was explained by the task
itself, prior to examining neural activity, we fit a one-parameter
item-response theory (IRT) model and examined its predictive
performance. Because some subjects performed the final recall
test online, we included a person-level parameter that allowed
performance to vary between groups (79). Specifically, we fit the
model P(rws = 1|s, w) = logit−1(θs + δ1ls=Online + bw) with
θs ∼ N (0, σθ ), where w indexes Lithuanian–English word pairs,
s indexes subjects, rws is the response (correct or incorrect recall)
of each subject to each word pair, ls is a variable that indicates
the location in which a subject took the recall test (Online or
in Lab), δ represents the difference in performance between the
groups, and bw and θs represent the latent word memorability and
subject ability parameters, respectively. This model estimates one
parameter for each subject which captures their overall ability and
one parameter per word-pair which captures its overall difficulty

PNAS 2023 Vol. 120 No. 13 e2120288120 https://doi.org/10.1073/pnas.2120288120 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
O

L
U

M
B

IA
 U

N
IV

 L
IB

 S
A

S-
E

L
E

C
T

R
O

N
IC

 M
A

T
E

R
IA

L
S 

on
 M

ar
ch

 2
3,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
12

8.
59

.1
76

.3
7.



Fig. 3. Methods for constructing the three types of multivariate neural
features from fMRI signals recorded during encoding. Each word pair in the
experiment was presented five times, and red numbers in the Upper Right
corner indicate the repetition number (but were not present during the
actual experiment). Item Pattern Similarity (IPS) is computed by comparing
two presentations of the same word pair. Global Pattern Similarity (GPS) is
computed as the mean similarity between a given word pair presentation and
presentations of all 44 other word pairs from a different repetition (shown
here: repetitions 1 and 2). All repetitions of an item took place on separate
scanner runs, so only including presentations from different runs ensured
that similarity was purely driven by the response to the item and not, e.g.,
shared scanner noise. Inter-Subject Pattern Correlation (ISPC) is computed
by comparing a single presentation of a word pair for one subject to the
same presentation of that word pair for all other subjects and averaging the
similarities.

in the population our subjects were drawn from.‡ We fit this
model repeatedly, leaving one subject’s data out and evaluating
their predictive performance based on the area under the receiver
operating characteristic curve (AUC 82–84), computed for the
held-out subject. This IRT model achieves an average held-out
AUC of .72.

Neuroimaging Analyses. As validation of our neural recordings,
we first created standard subsequent memory maps, across all
repetitions individually and averaged (SI Appendix, Fig. S5–S10).
We next attempted to predict memory performance on each
individual word pair for each subject from the four types of
neuroimaging signals described above. Fig. 3 shows how we
computed each of the multivariate measures from the trial-
evoked neural signals recorded during the task. We use a standard
ridge regularized logistic regression§ approach (86), which has
commonly been used for studying the neural predictors of
memory, e.g., refs. 42, 87–89, and fit separate models for each of
the four features, allowing us to interpret which of the features
were associated with successful memory prediction, both without
and with adjustments for the memorability of individual word
pairs within the context of the list. We focus on linear models here
due to their widespread use in the literature and leave evaluating
possible nonlinear relationships, such as interactions across
time and space, to future work. Our approach of combining
regularized machine learning models with statistical adjustment
for confounders is related to the value-added prediction method
of Reiss et al. (90), leveraging the Potter (91) approach to
adjustment. Conceptually, however, we believe that the approach
we advocate here is much more straightforward.

To compute the features, we first estimated individual voxel
BOLD activation associated with the onset of each study trial

‡We initially tested a model that included random effects allowing for differential item
functioning between the group that took the test online and the group that took the
test in the lab (80, 81). However, we found no evidence for differential item functioning
(SI Appendix) and therefore did not explore this model further.
§Also known as L2-regularized logistic regression (85).

with a general linear model (GLM) using the least squares-single
approach described in ref. 92. Given these maps of activation,
we could then compute the four features associated with each
trial presentation. Ideally, because regularization downweights
features that are less useful for prediction, we would include
every feature in a single model and infer the optimal predictive
model. However, in practice, it is well known that including
more irrelevant features requires more regularization, limiting
predictive performance (93). In addition, it has long been
acknowledged that smoothing can improve the performance of
MVPA analyses (94). This is especially true in the across-subject
prediction setting where individual voxels may not be perfectly
aligned (95, 96). Finally, taking averages (or weighting a number
of features equally) can have good statistical properties over
learning weights for individual features, especially in small
datasets, e.g., robustness to noise (97, 98). We therefore describe
several approaches below for models that vary in their number
of features as well as amount of aggregation prior to computing
features, which allows us to test the sensitivity of our approach to
these two concerns and strike a balance between model flexibility
and sensitivity to small effects.

Because each word pair was presented five times, we considered
several approaches to combining the five measurements to predict
a single recall test. One approach is to simply include all features,
one for each study trial, and allow the statistical model to infer
their relative importance from the training data, as it may be that
measurements taken early on or closer to the end of the study
session might be more relevant than others. Another approach
is to take the mean of each feature across the five presentations.
This approach has been used in previous studies with multiple
presentations of the same item, e.g., ref. 15.

Multivariate neuroimaging signals necessarily involve com-
puting the relationship between several measurements, typically
neighboring ones, e.g., grouped via an anatomical map into
predefined brain regions of interest or using a searchlight analysis
(94). In order to make our models using univariate activity more
comparable in terms of number of features, as well as make
them more robust to across-subject deviations, we aggregate voxel
activation at the region of interest (ROI) level as well. In our most
flexible version of the model, we computed each multivariate
feature in each of 100 cortical ROIs from a parcellation of
the brain defined by Schaefer et al. (99) (Fig. 4A). In order
to restrict the number of irrelevant features, we test models
using only a subset of targeted ROIs, selected to reflect the
domain knowledge about regions likely to be involved in memory
encoding in a verbal learning task (Methods and Fig. 4B for the
exact definitions). Due to the central role the hippocampus is
thought to play in memory formation (100–102) and because
of the difficulty in recording precise fMRI BOLD signal from
the hippocampus when using standard imaging sequences for
targeting the whole brain (103), we test several models including
only features computed in the hippocampus. The separate set
means that the smaller signal-to-noise ratio in hippocampus
BOLD will not prevent its inclusion in the penalized regression
models we use for prediction. We test models that include the
average activity, pattern similarity, and global pattern similarity
in each individual’s whole hippocampus and also hippocampal
subparts (left and right, posterior, medial, and anterior). In
addition, we also select the voxels that are included in all
participants’ anatomically defined hippocampus which allows
us to test a classifier based on individual hippocampal voxel
activity. Finally, we can define a whole hippocampus intersubject
pattern correlation feature based on these overlapping voxels
(Fig. 4C ).
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A

B

C

Fig. 4. Example location (MNI) and extent of ROIs used for predictions. (A)
Ref. 99 100 ROI parcellation; (B) Example of the targeted ROIs; (C) Anatomically
defined anterior, mid, and posterior hippocampal ROIs for one participant
(Left) as well as the proportion of participants having a particular voxel
assigned to one of the three hippocampal ROIs (Middle and Right).

As a final strategy for decreasing sensitivity to errors in voxel
alignment, we follow a whole-brain strategy, inspired by ref. 88,
where we treat the average activity in an ROI (using the same
set of ref. 99 cortical ROIs as above) as a “voxel” for the purpose
of computing similarity across item presentations in multivariate
features.
Subsequent memory models. We first test the ability of these
features to predict in a standard subsequent memory setting,
that is, predicting memory performance only from features of
the neuroimaging signals. These models have the form P(rws =
1|s, w, θ̂ ,X) = logit−1(α̂ + θ̂s + δ̂1ls=Online), where w indexes
a word pair, s indexes a subject, and X is one of the sets of
neuroimaging signals defined above, normalized within subject.
Because this model was fit across subjects, we also included
subject-level intercepts to account for overall subject differences
in recall performance. To accomplish this, we used the estimates
of subject ability α̂ + θ̂s + δ̂1ls=Online from a random-effects
model, P(rws = 1|s, w) = logit−1(α + θs + δ1ls=Online) with
θs ∼ N (0, σθ ). We estimate the predictive power of these models
with leave-one-subject-out cross-validation (105), using the area
under the ROC curve as a performance metric. Within each
training set, we fit these models using a ridge penalty on the
β parameters and choose the amount of regularization using
ten-fold cross-validation. To evaluate the models’ generalization
performance, we conduct statistical tests on the held-out AUCs.
For the standard models, we compute a one-sample t-test,
comparing the model’s performance to the AUC of a random
guessing model (.5). In leave-one(-subject)-out cross-validation,
the distribution of AUC scores (or any other metric) across
holdout sets will in general be correlated because the training
set for the classifiers will be largely the same. The independence
assumptions of the t-test are therefore violated (106). To remedy

this, we use a permutation test to estimate the empirical null
distribution of paired t-statistics when there is no relationship
between the fMRI features and recall (107–110).

In Fig. 5, we plot the mean and SE of the AUC estimates
in held-out subjects. We show results using both the mean
feature across all repetitions as well as using all study block
and study-block pairs. Several of our feature/ROI combinations,
when aggregated at the mean level, predict memory significantly
above chance (.5) based on a permutation test. These include
ISPC, GPS, and activity models using all Schaefer ROIs as well
as when using only the set of targeted ROIs (M = .56 to .63,
permuted Ps < .05). Results are overall similar when including
each presentation or pair of presentations separately except that
the ISPC models and the Targeted GPS model are no longer
significant. Finally, a model that uses all available features from
all models tested predicts significantly above chance. Because we
are testing so many models, it may make sense to control the
overall false discovery rate across all models tested (104). When
we calculate the adjusted q values, the Schaefer GPS model
including all pairs of repetitions and the Targeted mean GPS
model are no longer significant.

Overall, this suggests that several features we tested are able to
successfully predict memory across subjects and would normally
be classified as subsequent memory effects. In particular, when
averaging over all study blocks and including all cortical ROIs,
ISPC, GPS, and univariate activity could all successfully predict
memory in a held-out subject. While most MVPA analyses of
memory perform within-subject prediction on new sessions, this
is a demonstration of across-subject prediction of recall from
neuroimaging measures of encoding. This demonstrates that
these features of the neuroimaging signal contain a significant
amount of information about memory performance. Next, we

Fig. 5. Classifier performance based on the Standard Subsequent Memory
Model. Each combination of ROIs, features, and time-point treatment is
plotted separately with definitions of terms found in Methods. IPS = Item
Pattern Similarity, GPS = Global Pattern Similarity, ISPC = Intersubject Pattern
Correlation. The black line indicates chance AUC (.5), and statistical tests are
compared with this baseline. * = P < .05 based on a permutation t-test, ** =
q < .05 after false discovery rate (FDR, 104). Error bars reflect the unadjusted
SEM. Violin plots reflect permutation null distributions.
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Fig. 6. Classifier performance based on the ICEA Subsequent Memory
Model. Each combination of ROIs, features, and time-point treatment is
plotted separately with definitions of terms found in Methods. IPS = Item
Pattern Similarity, GPS = Global Pattern Similarity, ISPC = Intersubject Pattern
Correlation, JOL = Judgment of Learning, IRT = Item Response Theory model.
JOL and IRT are plotted in each column for comparison although they do not
differ across columns. * = P < .05 based on a permutation t-test, ** = q < .05
after an FDR (104) adjustment. Error bars reflect the unadjusted SE of the
mean. Violin plots reflect permutation null distributions.

will test whether there is evidence that the signals reflect activity
that is causally involved in encoding or downstream from such
activity.
ICEA subsequent memory models. The IRT model described
above estimates the expected performance for each item in the
list without considering a subject’s neural signals, essentially
estimating the total effect of potential confounding variables
(mean AUC = .72). Given the performance of that model, we can
see that the potential confounding factors in a standard memory
task already account for a significant amount of the variance in
memory behavior.

To estimate ICEA-related subsequent memory effects, we then
combine this IRT model with a model for predicting memory
from the neuroimaging features. If this model has a stronger
relationship with memory performance than the IRT model
alone, we argue that this provides evidence that the neuroimaging
features reflect ICEA. To do so, we fit a ridge regularized logistic
regression that includes a fixed intercept (or offset), which is the
linear predictor for each subject and word pair that was estimated
previously in the IRT model, i.e., θ̂s + δ̂1ls=Online + b̂w. The
full model we estimate is therefore: P(rws = 1|s, w, θ̂ , b̂,X) =
logit−1((θ̂s + δ̂1ls=Online + b̂w)+βxws), where xws is a vector of
neural features (e.g., average activity in several ROIs) for subject
s on word pair w. The distribution of held-out AUCs for each
model is plotted in Fig. 6. We compare each model’s held-out
AUC performance to the IRT model using a paired t-test and
using permutations to construct the null distribution. Among
these models, only the Targeted (M = .727) and Schaefer (M =
.727) Activity models using the mean of the study blocks and
the Whole-Brain ISPC model (M = .723) using all study blocks
perform significantly better than the IRT model (permuted Ps
< .05). However, after false discovery rate adjustment, none of

the q values are less than .05. Thus, there is no reliable statistical
evidence that any of the fMRI features we included in our models
are reliably measuring ICEA. In SI Appendix, Figs. S14 and S15,
we examine the same set of models using only features from a
single study trial or study trial pair, finding qualitatively similar
results there as well.
Judgments of learning. We now test whether the behavioral
judgments of learning (JOL) ratings appear to reflect ICEA.
We can use the same modeling approach we employed above,
predicting memory from the judgments of learning while
adjusting for confounding variables using the parameters from
the IRT model. The model including judgments of learning did
predict significantly better than the IRT model, improving the
AUC on average by .0116 (t(56) = 6.84, P < .002).¶ Assuming
that the JOLs are a behavioral readout of neural activity, this
implies that the underlying activity is ICEA by the definition
adopted earlier. However, given our permutation approach to
hypothesis testing, we cannot compare the magnitude of the
JOL predictive power to that of the fMRI signals. Therefore, we
do not claim that the underlying activity that produces a JOL
ICEA is not causally stronger than that underlying the fMRI
signals, but merely that the JOL ICEA signal is reliable enough
to be detected.

Discussion

We found that several univariate and multivariate features
of fMRI data proposed in the subsequent memory literature
(2, 3) could predict cued recall over a long delay in a verbal
paired-associates task. We also demonstrate that Intersubject
Pattern Correlation (ISPC) is a predictor of memory in a task
not using video stimuli and that Global Pattern Similarity (GPS)
outside of the hippocampus predicts memory in a recall task.

However, like in many memory experiments, a signifi-
cant amount of the variation in the probability of a subject
remembering a particular item was explained by the average
performance in the population for the specific item in its partic-
ular experimental context. A common perspective on subsequent
memory effects is that they index “the depth of encoding of
the to-be-remembered stimuli” and “determine the efficacy of
memory encoding” (18), suggesting that the underlying activity
is causally involved in memory encoding. But because the effects
that lead an item to be more likely to be remembered on average
might also drive neural activity, the existence of variation in
memorability across items confounds a causal interpretation of
subsequent memory effects based simply on raw associations.
We therefore tested to what extent memory-related fMRI signals
were related to variation in recall after adjusting for possible
confounding variables such as item memorability (29), serial
position (43), and list composition (45). Our analyses, based on
comparing predictive models using only behavior with models
using behavior and fMRI data combined, showed that the
subsequent memory effects we observed were highly correlated
with population memorability and did not consistently improve
predictions across subjects once the predictive model included
the average memorability of an item in a particular context
in the population, estimated via a psychometric model. This
suggests that the causal interpretation of the activity measured by
subsequent memory effects may be less warranted than typically
assumed. At least in our data, these analyses suggest that objective

¶This was the smallest possible p-value in our permutation test given that we ran 500
samples. The true P-value may be much smaller, but we do not have the precision to
report it.
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characteristics of target items may drive a significant portion of
the subsequent memory effect. In addition, to the extent that we
can rely on ICEA results that were nominally significant, although
not at standard levels after false discovery rate adjustment, to
indicate possible interesting signals to investigate in future work,
the standard subsequent memory effect was not particularly
correlated with ICEA results. Indeed one of the significant ICEA
signals was the whole-brain intersubject pattern correlation, a
signal that was not a significant subsequent memory effect and
one that we do not know of any prior work on in the existing
literature on cognitive neuroscience of memory.

Of course, it is entirely possible that our inability to derive a
statistically reliable signal of plausible causal encoding activity
is simply due to higher variability in our behavioral and
neuroimaging data than the typical subsequent memory study.
In our experimental design, we did not explicitly manipulate
task demands, nor impose a strategy on subjects. In addition,
the nature of our task (long delays, associative memory, and
novel stimuli) may have prevented some processes, perhaps those
causally involved in memory formation, from being involved
that may typically be measured by subsequent memory effects.
However, we argue that the strength of the results using the
standard subsequent memory approach, without accounting for
confounders, and the results of the ICEA subsequent memory
approach when including the judgments of learning as a signal of
mnemonic status during a temporally distal period place limits
on these alternative explanations. In the following, we discuss
several interpretations of these analyses and their implications for
future studies of subsequent memory. We additionally provide
further detail on the relationship of the present study to past
work in SI Appendix.

One explanation is that much of the variability in memory that
could be predicted at encoding is explained by the psychometric
model already. For the fMRI features to predict when controlling
for the confounding variables, they would have to be reliably
indexing causal encoding processes that contradict the prediction
from a model based on population averages (e.g., a failure to
pay attention to a particular item). Some might argue that
these occurrences are relatively rare, especially if participants are
focused on the task, therefore reducing our ability to observe
ICEA. In addition, due to the long delay, there is the potential
for a lot of variability in memory accessibility between encoding
and retrieval due to events that happen in between, limiting the
predictability of memory in our task. However, the performance
of the model including Judgments of Learning shows that there
is a signal (that is in fact consciously available to subjects) that
consistently predicts subsequent memory even across items with
the same population memorability. This model gives a lower
bound on what is explainable near the time of encoding and very
distant from the time of the retrieval test.

A second possible interpretation is that there is too much noise
in the fMRI data to hope to find signals comparable to a judgment
of learning in a data set of our size. However, at 57 subjects, our
data set is approximately 2 to 3 times the size of most data sets in
the subsequent memory literature, although we use fewer items
than typical studies using recognition memory. In SI Appendix,
we conduct a post hoc power analysis and compare to other study
designs in the literature, showing that our experiment likely had
greater power than most other subsequent memory studies. This
indicates that future work trying to isolate ICEA may require
large data sets and tightly controlled designs.

A third possible interpretation is that there are indeed signals
of ICEA that exist in fMRI data, but they are highly variable

across people, perhaps due to a lack of precise voxel alignment or
differently shaped brains causing variation in the signal-to-noise
characteristics. If this were the case, it may be that our attempt
to do across-subject prediction was doomed from the start.
However, we point to the success of our associative subsequent
memory models (without adjusting for confounding variables)
as evidence that these issues do not prevent any across-subject
prediction in our data. In addition, several of our features made
efforts to circumvent this difficulty by a) aggregating data at
higher levels (e.g., the whole-brain analyses treating each ROI
as a “voxel”), b) using hippocampal ROI definitions based on
individual subjects’ anatomy, and c) using multivariate measures
like pattern similarity that are less sensitive to perfect alignment
across subjects. However, none of these features seem to have
succeeded in improving classifier accuracy significantly beyond
the IRT model.

A fourth possible interpretation is that the actual cognitive
strategies used for learning (especially in an undirected, inten-
tional encoding task like ours) are highly variable across people.
For instance, it may be that high-memorability word pairs are
easier to sound out, resulting in greater activity in phonological
regions on average. But if sounding out is an effective strategy
for only some people, activity in a particular phonological region
may not consistently predict memory. Across-subject prediction
differs from the usual two-level within-subject paradigm that is
typical of MVPA studies in that it is more sensitive to small-
magnitude, low-variability effects but less sensitive to high-
magnitude, high-variability effects (95). If the measurement of
encoding processes is more like the latter scenario, this suggests
that future studies of subsequent memory will require larger data
sets that allow for understanding groups of subjects who use
similar encoding strategies.

A fifth possible interpretation is that certain aspects of our
design, such as the inclusion of multiple study opportunities and
a judgment of learning task, diminished the relationship between
ICEA during any one word pair presentation and future memory,
relative to other more typical SME designs. As noted above, we
used multiple repetitions to allow for testing of IPS, an important
and theoretically motivated predictor of subsequent memory
(15), as well as increasing the educational relevance of our study.
However, it is possible that repetitions decreased the effect of
individual moment-to-moment fluctuations in encoding quality
on subsequent memory and increased the effect of item and task
effects. Therefore, future studies seeking to isolate ICEA may
prefer to not investigate IPS and use single-item presentations,
which may increase the magnitude of the ICEA signal in fMRI.
Indeed, there may be reasons to think that stability of item
representations across presentations is related to properties of
the items (70) and is therefore unlikely to reflect ICEA.

It is similarly possible that judgments of learning provided
an additional study or retrieval practice (111, 112) opportunity
although effects may be quite small (113, 114), thus decreasing
the relevance of ICEA during the previous study trials on
future memory performance. However, we do not think that
the inclusion of these JOLs was a major concern for two reasons.
First, we do still observe the SME using the Standard Subsequent
Memory Model, suggesting that the judgment of learning trial did
not completely swamp all of the variance in memory and prevent
the prior fMRI signals from predicting memory. Second, we use
a long (by subsequent memory effect standards) study-test delay
of 72 h. In a more typical study where the test came shortly after
the study period, a judgment of learning trial in the intervening
period could have a very large effect on the mnemonic status at
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test time. However, in our task, subjects have many uncontrolled
experiences, in addition to the judgment of learning, in which
they may reencounter words they saw in the task, similarly
providing a retrieval practice opportunity. Therefore, we believe
that the effect of the additional judgment of learning is likely to
be relatively small. In fact, it is fairly amazing that the judgment
of learning reads out a causal signal that contributes to memory 3
d later, despite the potential for intervening reminders. However,
future studies investigating ICEA may choose not to include JOLs
as a way to increase similarity to previous studies.

Overall, it is certainly possible that our study was limited
by a low neuroimaging signal-to-noise ratio and high across-
subject variability in both the fMRI BOLD measurement and the
cognitive processes involved in encoding themselves. However,
we argue that the success of the JOLs as a predictor of memory
after adjusting for confounding and the existence of successful
memory prediction from fMRI in the absence of item and task
variables suggest that this cannot be the complete story.

Conclusion

In the 40 y since the first subsequent memory effect was
reported (4), much has been learned about the neural signals
associated with memory. A vast literature maps the various
univariate and multivariate signals across the brain, along with
proposed cognitive computations being implemented by the
underlying neural activity. In addition, many signals have
supporting evidence from animal and lesion studies. This paper
contributes to this literature by documenting the existence of
several subsequent memory effects in a novel language-learning
task. We show that many features proposed to be relevant
for other types of memory tasks such as Intersubject Pattern
Correlation and Global Pattern Similarity also apply here.
However, the exact interpretation of these subsequent memory
effects remains ambiguous, and the original hope of identifying
the causal mechanisms of memory encoding has not been fully
realized. Here, we defined a framework for making progress
toward identifying (Indicators of) Causal Encoding Activity from
neuroimaging signals. Based on this formulation, we attempted to
precisely control for many exogenous effects including stimulus,
presentation order, and overall list context effects that have been
documented to influence the probability of recall in order to see
whether we can extract signals from fMRI that are still associated
with subsequent memory performance, reflecting activity that is
either causally involved in memory encoding or downstream from
such activity. While we were not able to identify such signals, we
suggest that future work leverage the techniques of this paper, i.e.,
classifier analyses and tight control of memorability, with larger
datasets, different tasks, and new features of the fMRI signal.
By controlling even more aspects of the task, future work can
remove additional potential confounds of ICEA. In several ways,
our own design could be improved, for instance, by using items
with more similar memorability scores (so that more variance
can be explained by the neural signals), by including a movie-
watching portion of the scanner task that would allow for the
use of better alignment tools (96, 115) or by using a task such
as recognition memory that would allow for more trials to be
collected per participant. Despite these qualifications, we think
that these results suggest that interpretations of classic subsequent
memory results may not be as straightforward as commonly
assumed and lay out key questions for cognitive neuroscientists
of memory to address in the future. Similar to recent work in
other fields of neuroscience, explicit causal inference can overturn
common interpretations of correlational results (116). We do not

conclude that there are no memory-related causal signals available
to noninvasive observation. Instead, we want to highlight the
message that appropriate accounting for various stimulus and
contextual factors can facilitate the identification of these signals.
Indeed, we fully expect that people will identify such markers of
memory formation (or have already done so) and will be able to
causally interact with memory formation in the near future.

Materials and Methods
Participants. Sixty-nine participants were recruited using electronic advertise-
ments hosted by New York University and accessible to the broader community.
We obtained written informed consent prior to conducting the study. This
study was approved by the New York University Institutional Review Board.
All participants self-reported to be between 18 and 35 y old, had normal or
corrected-to-normal vision, spoke English fluently, and did not speak Lithuanian
or a related language.

Eleven participants’ data were excluded from analysis based on MRI data
issues: two participants’ MRI sessions were conducted with incorrect scanning
parameters; six participants were excluded based on excessive motion and
other image quality issues; three participants requested early termination of the
experiment due to discomfort in the scanner (and did not complete the recall
test). We also excluded one of the participants who recorded 100% correct in the
recall test since their held-out AUC would be undefined, resulting in a final data
set of 57 participants

Behavioral Task. Based on a normed set of Lithuanian–English words, we
selected 45 translation pairs with a range of difficulties (75) for use in our cued
recall task, also described in Fig. 1. All participants first completed a study phase
inside the fMRI scanner where they saw the translation pairs presented one at
a time for 4 s each with a variable duration intertrial interval (randomly chosen
between 4 and 16 s). During this intertrial interval, in order to prevent rehearsal,
participants made judgments about whether each of a series of numbers was
odd or even.

Words were presented on a computer screen with the Lithuanian word at the
top of the screen and the English translation underneath. Each word pair was
presented five times, and no pair was presented for the nth repetition until all
words had n−1 presentations. Importantly, and in contrast to many psychology
studies on the subsequent memory effect, all participants see the same sequence
of study items. At the expense of generalizability, this allowed us to precisely
quantify the average recall performance for a word pair in a specific context and
account for any interactions between items. The order of the word pairs was
selected as follows: The 45 words were grouped into groups of five words each.
On each repetition, the order of the five words was shuffled, but all five words
appeared before the next group of five were presented. Using this approach, we
sampled a single order of item presentations that was then used for all 69 subjects
in our study. Immediately following the study session, participants completed a
second section outside the scanner that involved making judgments of learning
JOLs (78): For each pair, participants were presented with the Lithuanian word
and English word and used the computer mouse to indicate on a scale of 0 to 100
how likely they were to remember the association in 3 d. Participants had up to
12 s to respond, and the response was coded as missing if this deadline was not
met. (In practice, all participants gave all JOL ratings within the allotted time.)

Participants were then asked to complete a recall test approximately 72 after
the initial scan session. The first 44 of the subjects completed this in the lab,
and the final 13 subjects completed the second session at home, via an online
version of the task to ease the task of scheduling sessions with a 72-h delay
between. Overall task performance varied slightly but statistically significantly
between the sample that completed the recall task in the lab compared to those
who completed it online (SI Appendix). This difference may have been due to
a number of factors including that the data were collected at a different time
and that some Internet capability was required to complete the task. However,
word memorability did not differ across the two test modalities, so we proceed
using similar models for both sets of subjects. Participants saw a Lithuanian word
presented on the screen and had to type the associated English word. A trial
was coded as correct if participants typed the correct English word (allowing for
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typographic errors) and all other responses were incorrect. Like the judgments
of learning, this task was completed outside the scanner.

fMRI Data Acquisition. MRI data were acquired on a 3 Tesla Siemens Prisma
scanner. Anatomical images were collected using a T1-weighted MPRAGE high-
resolution sequence (0.8-mm isotropic voxels). Five runs of whole-brain BOLD
functional data were acquired using an EPI sequence (2.5-mm isotropic voxels;
TR = 1 s; TE = 35 ms; multiband factor = 4; phase encoding: anterior–posterior).
An additional pair of nonaccelerated EPI scans with opposing forward (anterior–
posterior) and reverse (posterior–anterior) phase encoding relative to the primary
functional data was collected for distortion correction during preprocessing
(2.5-mm isotropic voxels; TR = 4.496; TE = 45.6). The slice position and
orientation for these scans matched those of the BOLD data collected during the
behavioral task.

fMRI Preprocessing. Results included in this manuscript come from prepro-
cessing performed using fMRIPrep 1.2.6-1 (117), which is based on Nipype
1.1.7 (118).
Anatomical data preprocessing. The T1w anatomical scans were corrected
for intensity nonuniformity (INU) using N4BiasFieldCorrection (ANTs 2.2.0,
119). A T1w-reference map was computed (after INU-correction) using
mri_robust_template (FreeSurfer 6.0.1, 120). The T1w-reference was then
skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as the
target template. Brain surfaces were reconstructed using recon-all (FreeSurfer
6.0.1, 121), and the brain mask estimated previously was refined with a
custom variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray matter of Mindboggle (122). Spatial
normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c
(123) was performed through nonlinear registration with antsRegistration (ANTs
2.2.0, 124), using brain-extracted versions of both T1w volume and template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), and
gray matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9
125).
Functional data preprocessing. For each of the five BOLD runs collected
per subject (across all tasks and sessions), the following preprocessing was
performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A deformation field
to correct for susceptibility distortions was estimated based on two echo-
planar imaging (EPI) references with opposing phase-encoding directions,
using 3dQwarp (AFNI 20160207, 126). Based on the estimated susceptibility
distortion, an unwarped BOLD reference was calculated for a more accurate
coregistration with the anatomical reference.

The BOLD reference was then coregistered to the T1w reference using
bbregister (FreeSurfer), which implements boundary-based registration (127).
Coregistration was configured with nine degrees of freedom to account for
distortions remaining in the BOLD reference. Head-motion parameters with
respect to the BOLD reference (transformation matrices, and six corresponding
rotation and translation parameters) are estimated before any spatiotemporal
filtering using mcflirt (FSL 5.0.9, 128). The BOLD time series were resampled onto
their original, native space by applying a single, composite transform to correct
for head motion and susceptibility distortions. These resampled BOLD time series
will be referred to as preprocessed BOLD in original space or just preprocessed
BOLD. The BOLD time series were resampled to MNI152NLin2009cAsym
standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym
space.

Several confounding time series were calculated based on the preprocessed
BOLD: framewise displacement (FD), DVARS, and three region-wise global
signals. FD and DVARS are calculated for each functional run, both using
their implementations in Nipype (following the definitions by 129). The three
global signals are extracted within the CSF, the WM, and the whole-brain
masks. Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction (CompCor, 130). Principal components are
estimated after high-pass filtering the preprocessed BOLD time series (using a
discrete cosine filter with 128-s cutoff) for the two CompCor variants: temporal
(tCompCor) and anatomical (aCompCor). Six tCompCor components are then
calculated from the top 5% variable voxels within a mask covering the subcortical
regions. This subcortical mask is obtained by heavily eroding the brain mask,

which ensures that it does not include cortical GM regions. For aCompCor,
six components are calculated within the intersection of the aforementioned
mask and the union of CSF and WM masks calculated in T1w space, after their
projection to the native space of each functional run (using the inverse BOLD-
to-T1w transformation). The head-motion estimates calculated in the correction
step were also placed within the corresponding confounds file. All resamplings
can be performed with a single interpolation step by composing all the pertinent
transformations (i.e., head-motion transform matrices, susceptibility distortion
correction, and coregistrations to anatomical and template spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs),
configured with Lanczos interpolation to minimize the smoothing effects of
other kernels (131). Nongridded (surface) resamplings were performed using
mri_vol2surf (FreeSurfer). Preprocessed BOLD data were smoothed to 6-mm
FWHM using AFNI 3dBlurToFWHM.#

Regions of interest (ROIs).

Gray matter and hippocampus anatomical masks Analysis of the
functional data was restricted to voxels encompassed by a binary mask
computed from the probabilistic gray matter estimates generated during the
FreeSurfer anatomical preprocessing combined with anatomically defined
voxels in individual hippocampi. For each participant, the probabilistic gray
matter mask was binarized with a threshold of 0.2 and intersected with
bilateral hippocampal voxels as estimated using FSL FLIRT implemented
in Nipype (128, 132). The combined gray matter/hippocampus mask was
resliced to functional resolution, smoothed with an 8-mm FWHM kernel to
be liberal in voxel inclusion (we opted to include some potentially nongray
matter voxels that could be ignored in downstream analyses rather than
being overly strict and excluding relevant signal) and then rebinarized with
a threshold of 0.2.
Whole-brain cortical ROIs For whole-brain cortical analysis, voxels were
aggregated into ROIs provided by ref. 99. To strike a balance between
regional specificity and total number of cortical ROIs, we used the
intersection of the gray matter mask defined during preprocessing and
the 100-parcel, 7-network atlas from ref. 99|| after reslicing to 2.5 mm3.
Targeted ROIs We defined a targeted set of nineteen ROIs on the basis
of prior expectations of these regions’ potential engagement in a learning
task involving verbal materials. We selected left and right perirhinal cortex
(PRC) and anterior temporal lobe (ATL) ROIs due to putative roles for
these regions in processing conceptual information (133). In addition,
we selected regions highly likely to be involved in memory formation
(2) and in processing concrete nouns (a category which includes all
of the word pairs in our stimulus set) (134). These ROIs included two
separate areas in the left anterior insula, left and right lateral occipital
cortex, left and right dorsal parietal, left and right lateral parietal, left
and right medial parietal (precuneus), left and right retrosplenial cortex,
an upper and a lower portion of the left ventrolateral prefrontal cortex
(VLPFC), and visual word form area (VWFA; left hemisphere only). This
set of targeted regions listed above were defined from a variety of
sources. The PRC regions were defined using the anterior portion (MNI
y > −21) of the PRC ROIs provided by ref. 135 as downloaded from
Neurovault** which overlapped with the PRC center coordinates reported
by ref. 133. The ATL ROIs were defined as the ref. 99 ROIs encompassing
the peak voxels reported by ref. 133 (99, 600 parcellation ROIs 191
and 492).

The remaining targeted ROIs were defined by identifying voxel groupings
from ref. 99 which encompassed other cortical regions expected to be
involved in memory formation and/or processing of verbal materials.

Single trial activation estimates. Individual voxel BOLD activation on each
study trial was estimated with a general linear model (GLM) as implemented

#https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dBlurToFWHM.html.
||https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Schaefer2018_LocalGlobal.
**https://neurovault.org/collections/3731/; https://identifiers.org/neurovault.collection:
3731.
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in SPM12 (136)†† using the least squares-single approach described in ref. 92.
For each study trial, a voxel-wise regression was carried out with one predictor
containing a 4-s boxcar covering the time points corresponding to the to-be-
estimated trial, another predictor containing four-second boxcars covering the
time points for all of the remaining trials, and fourteen additional predictors
containing a variety of other potential confounds and nuisance signals as
estimated by fMRIPrep during preprocessing (129). These confounds and
nuisance signals are related to head motion estimates and BOLD fluctuations
of no interest estimated from voxels outside of the gray matter. The full set
of nuisance regressors included the following: six parameters representing
estimated translational and rotational head motion in each of three dimensions;
two regressors with BOLD time courses estimated from cerebrospinal fluid (CSF)
and white matter (WM) masks; and the top six components estimated from the
aCompCor procedure which estimates temporal principal components from a
combined nuisance mask as described in ref. 130 and implemented in fMRIPrep.
To clarify, these confounds are confounds of the BOLD response on a particular
trial, and the purpose of regressing them out is to obtain closer estimates of
the true signal. In contrast, confounds we mention above are confounds of the
causal relationship between a neural signal and memory performance. Prior to
estimation, the vectors of single-trial and all-other trials were convolved with
the canonical SPM double gamma hemodynamic response function (HRF) along
with its temporal and dispersion derivatives (137). We then estimated regression
coefficients for each voxel using ordinary least squares, and the procedure was
repeated for each study trial for each participant. The resulting coefficients for
the single-trial predictors were taken as summaries for the activation for each
voxel on each trial.
fMRI feature estimates. After initial fMRI preprocessing, additional steps to
create the fMRI features for predictive models and reshape data were conducted
using custom code in python 3.7.7 using the packages pandas (138) and numpy
(139) and R 4.0.2 using the package collections tidyverse (140) and tidymodels
(141).

Multivariate patterns were derived from the single trial estimates for each
voxel in a particular ROI. While several distance metrics have been proposed
(142, 143), in order toremain faithful to the proposedfeatures, we usedPearson’s
r, which is the metric used by nearly every paper in the subsequent memory
literature,e.g., refs.15,68and66. Inaddition, for inclusioninthemodel,allof the
features are Fisher-z transformed (144), which is often used when aggregating
correlations since it makes the sampling distribution approximately normal,
which is slightly better for use in the regularized regression models we describe
in the following section.

Predictive Modeling.
IRTmodel. We estimate this model using maximum likelihood, as implemented
in the R package lme4 (145). Like the models involving fMRI data, these models
were trained in a leave-one-subject-out manner. When predictions are made
using these models for a held-out subject, θs was set to 0, where s indexed the
held-out subject.

††https://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

Regularized regression models. To estimate the models, we use cyclical
coordinate descent as implemented in the glmnet package (146) in R. We
estimate the predictive power of our models with leave-one-subject-out cross-
validation (105), using the area under the ROC curve as a performance metric.
We choose the size of the penalty on the β parameters (λ) using nested 10-fold
cross-validation. We choose a set of λ hyperparameters to try using the default
algorithm in glmnet: first λmax is chosen such that a model fit with that λ on
all of the data will have all parameter estimates near 0, using a formula from
(146). Then, 100 parameters are chosen on a log scale from λmax to λmax

10000 .
The model is estimated for each λ, and the λ that maximizes the log likelihood
of the held-out fold is chosen for evaluation. All of our fMRI-derived features
are standardized (by their mean and variance in the training fold) before being
included in the model.

Evaluation. To evaluate the models’ generalization performance, we conduct
statistical tests on the held-out AUCs. For the standard models, we compute a
one-sample t-test, comparing the model’s performance to the AUC of a random
guessing model (.5). AUC is a useful metric here because it is not affected by the
base rates of remembering and forgetting. For the main test, we compare the
ICEA models to the behavioral model using a paired t-test. To give the strongest
possible chance to the MRI features, for all models, we use a one-sided test of
whether the AUC in the ICEA model is greater. In leave-one(-subject)-out cross-
validation, the distribution of AUC scores (or any other metric) across holdout
sets will in general be correlated because the training set for the classifiers will
be largely the same. The independence assumptions of the t-test are therefore
violated(106).Toremedythis,weuseapermutationtest toestimatetheempirical
null distribution of paired t-statistics when there is no relationship between the
fMRI features and recall (107–110). To do so, we shuffle the pairing between the
fMRI features and the Lithuanian–English word pair within subject. This allows
us to maintain the correlation between fMRI features as well as the distribution
of word-pair population memorabilities and subject recall abilities. Crucially,
this also means that IRT does not change its predictions, so the residual variance
to be explained remains the same across permuted datasets. When shuffling
the data, we also maintain the structure of the sequence of items such that the
same five items appear in each group of five serial positions of each study block.
We created 500 permuted datasets, applied to the same classification models
and computed a paired t-statistic for the permutation test.

Data, Materials, and Software Availability. Anonymized Behavioral and
preprocessed fMRI data. Data have been deposited in OSF (osf.io/hrac5/).
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