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ABSTRACT
Knowledge tracing is a popular and successful approach to
modeling student learning. In this paper we investigate
whether the addition of neuroimaging observations to a knowl-
edge tracing model enables accurate prediction of memory
performance in held-out data. We propose a Hidden Markov
Model of memory acquisition related to Bayesian Knowledge
Tracing and show how continuous functional magnetic reso-
nance imaging (fMRI) signals can be incorporated as obser-
vations related to latent knowledge states. We then show,
using data collected from a simple second-language learn-
ing experiment, that fMRI data acquired during a learning
session can be used to improve predictions about student
memory at test. The fitted models can also potentially give
new insight into the neural mechanisms that contribute to
learning and memory.

1. INTRODUCTION
A shared goal for both cognitive science and educational
data mining is the development of accurate models of hu-
man learning. On the basic science side, learning and mem-
ory are important functions of the human brain that support
our ability to flexibly interact with our environment. On the
education side, predictive theories of learning may be lever-
aged by intelligent tutoring systems (ITS) to individually
optimize instruction [3, 22].

Perhaps the most influential approach to modeling student
learning in the educational data mining literature is “knowl-
edge tracing” [5, 11] whereby the learned mastery of a par-
ticular skill or fact is treated as a latent state and the proba-
bility that a person’s knowledge is in that state is updated in
light of observed student behavior. For example, in Bayesian
Knowledge Tracing (BKT), each learning unit is assumed to
be in one of two discrete states: {unknown, known}. Each
time the student engages in a learning activity, the latent
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knowledge can transition from the unknown to the known
state with probability l. Performance on a test, quiz, or
exercise is conditional on the latent knowledge state, such
that being in the known state is typically associated with a
higher probability of issuing a correct answer than being in
the unknown state. Using the model, it is possible to infer
posterior probabilities of the knowledge state of each learner
and skill using Bayes’ rule, given the pattern of responses
made on various assessments or quizzes. These probabili-
ties are then used to make predictions about learning per-
formance for new students, as well as to design optimized
instruction policies.

Research in this area focuses on building more precise mod-
els of student learning by, for instance, incorporating fac-
tors that reflect individual abilities [42, 23], contextual fac-
tors that contribute to errors [6], or models of the exact
moment at which a skill is acquired [7]. However, one rel-
atively underexplored question is what types of observable
data may be most useful for informing inferences about la-
tent knowledge states during learning. Of particular interest
is the idea that many other features besides overt responses
might be partially informative. For example, the student’s
response time to a test question may add additional informa-
tion about learning alongside correctness [26, 38, 41]. Like-
wise, patterns of mouse or eye movements during a learning
session might help index drifting attention [8, 29].

In this paper we demonstrate that it is possible to integrate
indirect neural measurements of brain activity into a cogni-
tive model of learning in a way that 1) can improve predic-
tion of a learner’s test performance at a 72 hour delay and 2)
allows knowledge tracing without interrupting the learning
environment with explicit tests or assessments (which can
be distracting or may bias learning).

Although acquiring neural recordings is impractical in most
educational settings, the approach of fusing multiple sources
of sensor data about individual learners may be a generally
useful method for the educational data mining literature.
In addition, as we show in our results, such modeling efforts
may also feedback to contribute to a better understanding of
the neural and cognitive mechanisms that support learning
and memory [2, 1, 35, 36]. Finally, as the cost and diffi-
culty of making indirect neural recordings falls (e.g., due to
the advent of portable, dry contact electroencephalogram
or EEG) the practicality of utilizing such sensors will likely
increase (c.f., [15]).



We begin by reviewing past work in cognitive neuroscience
which has attempted to identify predictive signals of learn-
ing and memory processes. Next we describe our approach
fusing concepts from knowledge tracing with what is known
about the cognitive neuroscience of memory. We then de-
scribe a dataset collected from human participants perform-
ing a simple second-language learning task while undergoing
functional magnetic resonance imaging (fMRI). We compare
the predictive power of a variety of models against held-out
memory recall data at study-test delays ranging from one
day to one week. From the fitted model we then extract the
neural signals corresponding to learning in the study period.

1.1 Prior work using cognitive neuroscience
methods to predict individual learning

The prediction and optimization of human learning has been
a long standing goal of cognitive neuroscience research. On
the prediction side, a number of studies have explored the
“subsequent memory” paradigm [30, 25, 14, 28]. In these
experiments, participants study controlled stimuli such as
lists of word pairs while brain signals (such as the blood
oxygen-level dependent “BOLD” signal measured via fMRI
or event-related potentials, ERPs, assessed with EEG) are
recorded. Some time later, participants’ memory is tested
for the material they saw during study. Accuracy on each
memory test item is used to back-sort the neural data record-
ings into brain patterns associated with successful versus un-
successful later memory. Regions with a reliable difference
in brain activation between these two classes are taken to
reflect neural correlates supporting lasting memory forma-
tion. Across these studies a coherent set of brain regions
have been identified as being involved in human memory
formation including the hippocampus and medial temporal
lobe, which have long been associated with memory forma-
tion on the basis of animal and lesion studies [31, 9].

Building on this work, Fukuda et al. (2015) identified two
EEG-based subsequent memory signals and used these to
classify study trials in a memory experiment as likely to
be remembered (initially well studied) or forgotten (intially
poorly studied). In a subsequent session, participants were
allowed to restudy half of the items identified as initially
well studied and half of the items identified as initially poorly
studied. A final test then assessed knowledge for all of the
items. Of particular interest was the finding that the restudy
opportunity most benefitted the initially poorly studied items
compared to the other items. Importantly, the entire pre-
diction about what was or wasn’t well studied was based
exclusively on indirect neural recordings for each subject
rather than any explicit assessment or test.

The subsequent memory paradigm has been a powerful tool
for studying the neural basis of memory. However, the cog-
nitive neuroscience literature does not currently take advan-
tage of the wealth of knowledge about predicting individ-
ual learning from the educational data mining and cognitive
modeling literatures. For example, classifying brain pat-
terns as forgotten based on a single test fails to account
for the possibility of “slippage” (errors in performance of
a mastered skill due to chance) which is central to BKT
models [11]. Likewise, when an item is not remembered
at test it could be for a number of reasons: the item may
have been poorly encoded during the study session, or per-

haps was well encoded and would have been remembered
at an earlier study session but was simply forgotten due to
decay or interference. Structured models such as Hidden
Markov Models (HMMs) can account for such latent mem-
ory dynamics and use them to help improve predictions.
The subsequent memory approach is also difficult to apply
when learners get repeated study opportunities because of
ambiguity about which brain scans should be classified as
causally related to the test performance. Finally, the stan-
dards for model development within the machine learning
and data mining communities is predictive performance on
held-out data which is often more difficult than describing
statistically reliably patterns within a single data set due to
the ability to overfit.

To address these issues, we describe an approach to the si-
multaneous modeling of behavior and neural recordings in a
single knowledge tracing model1. Our aim is to demonstrate
the value of combining insights from these still somewhat
disparate literatures. The approach we take is in some ways
similar to work by Anderson and colleagues that has tried
to infer from fMRI the mental state of individuals as they
engage in complex math problems [2, 1, 4, 43, 34] (see also
[35, 36]). While these reports hint at the utility of com-
bining fMRI with probabilistic cognitive models, this prior
work does not specifically address the learning and memory
issues considered here.

2. THE OMNI DATA SET
The dataset we consider, part of the NSF-funded “Optimiz-
ing Memory using Neural Information” (OMNI) project2,
consists of human performance on a cued-recall memory
test for a set of Lithuanian-English word translations. The
learner’s task is to study the word pairs across multiple pre-
sentations and then, after a delay, recall the English asso-
ciate for a presented Lithuanian word.

Starting with a normed set of Lithuanian-English words, we
selected 45 translation pairs [21]. During study, participants
saw the translation pairs presented one at a time for 4 sec-
onds each with a variable duration inter-trial interval (4s-16s
for consistency with event-related MRI timing). Words were
presented on a computer screen with the Lithuanian word
at the top of the screen and the English translation under-
neath.

Each word pair was presented five times and no pair was
presented for the nth repetition until all words had n − 1
presentations. Importantly, and in contrast to many psy-
chology studies on the subsequent memory effect, all partic-
ipants see the same sequence of study items3. Immediately
following the study session participants gave judgments of

1Here we focus on fMRI due to improved spatial resolution,
even though other methods (e.g., EEG and skin conduc-
tance response), also provide useful signals that correlate
with memory performance and could be incorporated into
our approach.
2http://gureckislab.org/omni
3Although the models we apply do not explicitly model
inter-item interactions, maintaining a fixed sequence across
participants ensures that some of these inter-item effects will
be captured in the model parameters we estimate because,
for instance, the measured difficulty of a word is always as-
sessed with respect to the other list items.



learning (JOLs, [24]): for each pair participants were pre-
sented with the Lithuanian and English word and used the
computer mouse to indicate on a scale of 0-100 how likely
they were to remember the association in one week.

Participants were given either an immediate recall test (0
hours) or returned to the lab approximately 24, 72, or 168
hours after the initial study session (randomly assigned)4.
During the recall test, participants saw a Lithuanian word
presented on the screen and had to type the associated En-
glish word. A trial was coded as correct if participants typed
the correct English word (allowing for typographic errors)
and all other responses were incorrect.

For more efficient estimation of the different model parame-
ters, we conducted a large behavioral experiment outside of
the MRI scanner and combined those data with additional
observations from participants who performed the same task
during MRI scanning (under this view all participants are
equally useful but purely behavioral subjects are treated as
though their MRI data are “missing” and so estimates of
their learning are based on the observed JOLs and recall
performance). Each participant (N=189) was tested at one
of the four study-test delays. Among the behavioral partici-
pants (i.e., no MRI data) the group Ns were 20, 49, 60, and
49 in the 0, 24, 72, and 168 hour study-test delay groups,
respectively. All MRI participants (N=21) were tested at
the 72 hour delay.

MRI participants underwent an identical study-test proce-
dure as the behavioral participants except they were scanned
during the study session. MRI data were collected on a
Siemens Prisma 3T at the New York University Center for
Brain Imaging. Functional Blood Oxygen-Level Dependent
(BOLD) data covering the cortex were acquired at a spatial
resolution of 2.5 mm3 with a 1 second repetition time (TR;
the temporal resolution of the fMRI data) and anatomical
scans were collected at a spatial resolution of .75 mm3.

To summarize, the final data set consists of a record for each
learner that contains: the pattern of recall attempts for each
list item, JOLs collected after the study session for each list
item, and, for each MRI participant, the 65x77x73 set of
voxel measurements across 2936 time-points describing the
BOLD signal recorded with MRI.

Figure 1 shows key features of the behavioral data. Across
the four different test delays, memory performance generally
drops, likely due to forgetting. Participant performance var-
ied widely from 0 to 100 percent correct. In addition, across
participants, average JOLs following study were weakly cor-
related with performance (r = [0.43, 0.24, 0.31, 0.55] and
p = [0.06, 0.10, 0.004, 3.4e−5] in the 0h, 24h, 72h, and 168h
groups, respectively). Pooling across all participants, the
mean JOL correlation with final performance is low but sig-
nificant, r = .365, p < 1e−7.

4Due to schedule difficulties a one subject returned at 48
hours but we still included their data in the modeling. In
addition, 9 of the 72 hour subjects were scanned in a different
fMRI scanner but we only include their behavioral data here.

Figure 1: Top: Mean recall performance (% correct)

for individuals (dots) at each study-test delay. Bottom:

Mean individual participant Judgment of Learning is cor-

related with individual overall percent recalled within

each delay condition.

3. INFERRING KNOWLEDGE STATES FROM
BEHAVIORAL AND NEURAL DATA

The following section describes the basic mathematical struc-
ture of our models. Similar to BKT, the core of our ap-
proach assumes a probabilistic representation of the latent
mnemonic status (e.g., remembered versus forgotten) of each
item on the to-be-remembered list and we begin with es-
tablished two- and three-state models that have shown ef-
fectiveness in tracking learning and memory [5, 11]. Where
our models differs from past knowledge tracing approaches is
that we propose a mapping between these latent mnemonic
states and patterns of brain activity that can allow the brain
data to inform this inference.

3.1 A Hidden Markov Model of Memory
Like BKT, our approach draws heavily from the structure
of HMMs. Each memory trace, i, (i.e., memory for the
association between two words) is represented as a non-
homogenous, censored Hidden Markov Model with the fol-
lowing properties (notation follows [27]):

3.1.1 States
Each trace can be in one of a number of discrete mnemonic
states, S. For simplicity we will begin with a two state
S = {sU , sK} model with states corresponding to unknown
and known similar to BKT. However, we also consider a
more complex, three-state model first proposed by Atkin-



son [5]. The three-state model has states S = {sU , sK , sP }
corresponding to unknown, known (with possibility of for-
getting), and permanently known (see Figure 2). Across
both types of models the sK and sP states represent mem-
ories that have generally higher recall probabilities (e.g.,
Pr[recall = correct|sP ] > 0), but the sK state is suscep-
tible to decay between study events while the sP state is
absorbing5. The current state of item i at time t will be
denoted qit.

3.1.2 Priors
A prior, πt=0, that captures our initial belief of the memory
state of all items. The prior for a particular item memory, i,
can be written as πi,s

t=0 = Pr[qit=0 = s] for s ∈ {sU , sK} (two
state) or s ∈ {sU , sK , sP } (three state). With unfamiliar
learning materials we assume that the initial memory status
is heavily biased towards the unknown state (i.e., πi,sU

t=0 is
much higher than for any other state).

3.1.3 Transitions
A set of transition probabilities, A, which determine the
likelihood that a memory will move between the different
states at each time point. In prototypical HMMs the transi-
tion probabilities are stationary and the same transitions are
applied at each time step. In our model there are different
sets of transition probabilities which are applied at a given
time step depend on the type of external “event”, eit, that
occurs (e.g., a study trial versus a time step between trials;
Figure 2). For memory trace i the transition probability of
moving from state s to s′ after an event of type g will be

denoted ai,g,s→s′

t = Pr[qit = s′|eit = g, qit−1 = s] where g
indicates the specific event type on trial t.

Event types depend on the particular experiment design but
here include “study trial” (study), “study with JOL trial”
(study+JOL), “timestep in which memory decays” (decay),
and“test trial”(test). Generally, during study or study+JOL
events we assume that items tend to transition from a more
poorly learned state to a more fully learned state. The prob-
ability of transitioning to a new state on a study trial is rep-
resented in our three state model by parameters x, y and z
and in the two-state model by parameter l (see Figure 2).
During decay, items in a non-permanent state (sK) have a
probability of transitioning to the unknown state with prob-
ability f while items in sP (in the three-state model) remain
in the permanently learned state. Decay events are nec-
essary to account for the patterns of forgetting across the
study-test delay intervals shown in Figure 1. We assume
test trials have no effect on transitions as they appear at the
end of the task.

We define an experiment protocol, E, as a N x T matrix
where N is the number of items being studied and T is the
total number of micro-time steps modeled in the experiment.
Each entry of the matrix, eit, codes which of a discrete set of
event types occurred on a time step as described above. The
protocol captures the dependencies between event sequences

5One way for the model to capture the difference in perfor-
mance at 24 versus 168 hours is to assume different mixtures
of the sK and sP states following learning. For example,
at 168 hours, traces in sP state may dominate correct re-
sponses.
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model. The letters within each matrix reflect the transi-

tion parameters which are estimated to data. The state

labels U are “unknown”, K are “known” (with possible

forgetting), and P are “permanently known.”

that influence different memory traces. For example, if word
w is studied on a given trial, then all the other items on
the list might undergo a memory decay event during the
same time step. This way the protocol enforces the implicit
tradeoffs of studying one item over others at a particular
point in time.

3.1.4 Observable signals
The mapping between brain and behavior is made through
a set of observation distributions, B, which define the
probabilities that, on event type g at time t, an observable
random variable of data type d, og,d

t takes on a value vg,dk

from a (potentially infinite) alphabet vg,d. For each memory
trace i, we can write the probability of its associated observ-
ables as bi,g,s,dt (vg,dk ) = Pr[og,d = vg,dk |e

i
t = g, qit = s]. Obser-

vation distributions in effect define the full generative model
that links both behavior and neural information to underly-
ing knowledge states. Here we consider three types of obser-
vations: behavioral assessments (recall), JOLs (JOL), and
hemodynamic fMRI measurements (MRI ). However, this
approach can easily incorporate many other measures in-
cluding response time, pupil dilation, EEG measurements,
or alternative fMRI signals.

Behavioral Assessments. At certain points during the
experiment the protocol might define a memory test event.
On these types of trials the subject might be asked to re-
call a studied item from memory or to recognize it from
a list of alternatives. The response given on these trials
is treated as an observation associated with this particu-



lar type of event. Specifically, the alphabet is vtest,recall ∈
{correct , incorrrect} and vg,recall ∈ ∅ for g 6= test , reflecting
the absence of any recall response on non-test events. The
distribution of test question answers about memory trace i
from state s at time t, is then bi,test,s,recallt (correct) = precalls
and bi,test,s,recallt (incorrect) = 1−precalls where precalls is de-
fined (or fitted) for each memory state. For other trial types,

i.e. g 6= test , bi,g,s,recallt (∅) = 1. So the update to state pos-
terior probabilities on those events is driven by the state
transitions. The parameters governing the probability of is-
suing a correct response conditioned on the latent memory
state are equivalent to the “guess” and “slip” parameters in
BKT.

Judgments of Learning. JOL responses were only given
on the last study trial (a study+JOL event). JOL data were
included in the model as the raw response/100 to each JOL
trial for each person, i.e. vstudy+JOL,JOL ∈ [0, 1] and null
for other trial types. We model the distribution of JOLs as
a truncated Gaussian distribution in the range 0 to 1, i.e.
bi,study+JOL,s,JOL
t = TN(µJOLs , σJOLs , 0, 1) with µJOLs and
σJOLs defined independently for each state s.

Hemodynamic fMRI measurement. Functional MRI
scans provide time-series data for each of a large set of 3-
dimensional voxels tiling the imaged volume (e.g., the brain).
In studies measuring fMRI activation levels at specific time-
points it is common to estimate the activation level within
voxels and then average voxels within spatial clusters, whether
spatially contiguous (regions of interest, or ROIs) or sets
of spatially disjoint but functionally related voxels show-
ing similar response profiles (e.g., independent components).
Due to the central limit theorem we can expect that the
mean activation within a set of such voxels will be approx-
imately normal. We also expect, based on prior work, that
there will be a mean shift in the fMRI activation levels of var-
ious brain regions during study trials that are later remem-
bered compared to those that are later forgotten [14, 28]. We
collect fMRI data for each study trial. The fMRI observation
consists of NfMRI features. Therefore, vstudy,MRI ∈ RNfMRI

and null otherwise. We model the fMRI state observation
distributions as independent Gaussians for each feature ni,

i.e. b
i,study,s,MRIni
t = N(µMRIni

s, σMRInis
).

3.1.5 Inference
The full model is specified by a protocol, E, a set of priors
over the states, πt=0, a set of transition probabilities, A, and
a set of observation distributions associated with each state-
event pair, B. Using Bayes’ rule, the posterior probability
that a memory trace on trial t is in state s′ ∈ S is:

πi,s′

t =
bi,g,s

′,d
t ai,g,s→s′

t πi,s
t−1∑

j b
i,g,sj ,d
t a

i,g,s→sj
t πi,s

t−1

(1)

3.1.6 Illustrative calculation
To illustrate the impact of hypothetical fMRI observations,
consider Figure 3 which shows the protocol, E, for the tim-
ing of study events for two memory traces (Panel A): item
1 (black) and item 2 (white). On time points where item
1 is studied the protocol has a black cell (and similarly for
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Figure 3: Example illustration of the effect of fMRI ob-

servations on inferences about latent knowledge in a two

state-model. A) Protocol showing the timing of study

events for item 1 (black boxes) and item 2 (white boxes).

B) State posterior estimates for item 1 obtained from a

hypothetical setting of the two-state model parameters

(dashed blue = SU , solid orange = SK). C) Hypothetical

“observed” fMRI signal on each study trial for item 1

(inset shows the probability density function over MRI

observation values conditioned on the state). D) State

posteriors for item 1 after incorporating the observation

likelihoods from study trials for this item. The inferred

state probabilities are dramatically altered by the incor-

poration of the MRI observation (see text).

item 2 using white). Panel B shows hypothetical evolutions
over time for the two-state posterior probabilities {sU , sK}
for item 1 obtained by applying the study and forgetting
transitions as shown in Figure 2 but without other observ-
able information (i.e., a Markov model). In this example we
set the l transition parameter applied on study events to 0.4
and the f parameter governing decay to 0.1.

At time point 1 the priors reflect the fact that before any
study attempts a person is unlikely to know the item (e.g.,

πi=1,sU
t=0 = .9). At time point 6, item 1 is presented for study

for the first time and the posterior probabilities of each state
are updated by applying the study transition probabilities
to the state posteriors on time t− 1. Immediately after this
study event, Panel B shows that there is now an increased
probability of item 1 being in state sK (solid orange line).
However, between time point 6 and 40, item 1 is not pre-
sented again and so for each time step between we apply the
decay transitions leading to gradual forgetting.

The addition of observable signals that are probabilistically
related to latent memory states alters these predictions. The
inset figure in Panel C shows how the mean response from a
set of voxels in the human brain might result in Gaussian-
distributed summed BOLD signals that overlap but differ
depending on the state of the memory (e.g., signal being
stronger for sK , orange, than for the sU , blue, state). Panel
C illustrates a hypothetical sequence of fMRI measurements
that could be made about item 1 during the study trials



(i.e., samples from the Gaussian distributions from the inset
plot).

Panel D shows the posterior estimates of item 1’s state at
each time point obtained through combination of the transi-
tion dynamics and MRI observations (i.e., using the Hidden
Markov Model). As can be seen comparing panel B and D,
the addition of observations that are probabilistically associ-
ated with latent states can lead to different inferences about
the posterior probabilities over those states. Until item 1
is presented at time point 6 the posterior estimates are the
same in the Markov and Hidden Markov Models. However,
at time point 6 we observe a fMRI signal of a particular
magnitude which in turn has a likelihood of originating from
each of the two underlying states. If we take into account
the observed signal, our estimates of the posterior over states
change, since a fairly small signal was observed and the like-
lihood of such a signal is substantially larger for state sU
than sK . Consequently, our belief that the item is in state
sK is lower when we include the observation in our estimates
than when we simply use the transition probabilities.

Similarly, at time point 40 item 1 is presented for a second
study opportunity. Without observations our best estimate
of the state probabilities suggests we should be indifferent
between sU or sK , but the larger MRI observation observed
is unlikely to have emerged from the unknown state and so
the observation-constrained posterior estimates are weighted
much more heavily towards the sK state. By including the
Markov dynamics characterizing the likely temporal evolu-
tion of memories, we can adjudicate between otherwise am-
biguous neural signals by appropriately dealing with uncer-
tainty in measurement.

3.1.7 Model Evaluation and Fitting Procedure
The following section details the model evaluation, compar-
ison, and feature selection strategies we used.

Model parameterization. Partially due to identifiability
concerns [37, 17], some parameters were fixed to semanti-
cally coherent values [16], while others were estimated from
the data.

For all words we fixed the initial state priors, πt=0, as [.99, .01]
or [0.99, 0.005, 0.005] for sU , sK in the two-state model or
sU , sK , and sP in the three-state model, respectively. This
was motivated by the fact that none of the learners in our
dataset had prior experience with Lithuanian. We also fixed
the probabilities of giving the correct test response, precall

as [.01, .9] and [.01, .9, .9] for latent memory states sU and
sK (two-state model) or sU , sK , and sP (three state model,
see below), respectively. This reflects the assumption that
it is very unlikely that one would guess the correct answer
in a cued recall test without any memory (s = sU ) and that,
as in [5], the primary difference between sK and sP in the
three-state model is the susceptibility to decay over time
rather than the availability of a memory to recall (via the
influence of the f parameter; see Figure 2).

Fitted parameters include those determining the transition
probabilities and observation distributions within each model.
Both the two- and three-state models have transition proba-
bilities to fit for each word pair w (summarized in Figure 2).

In the two-state model these are the lw and fw parameters
controlling memory strengthening and decay, respectively.
For the three-state models, the xw, yw, and zw values con-
trol transitions between states during study opportunities
and the fw parameter determines forgetting rates.

Although the learning trajectories for each word pair were
instantiated in separate HMMs, to get better estimates of
the parameters we used a hierarchical Bayesian model that
used group-level priors over the parameters to regularize the
estimates. Each xw was drawn from a Logit-Normal(x, σx)
where x itself was drawn from a Normal(0, 6) and σx was
drawn from a Truncated-Normal(0, 1). The model for the
fw parameters was exactly the same. The simplices zyw
were generated using the following procedure: z and y were
drawn from a Normal(0, 6). zw and yw were drawn from
Normal(z, σz) and Normal(y, sigmay) respectively with σz

and σy both drawn from a Truncated-Normal(0, 1). Finally,
zyw was set to softmax([0, zw, yw[). This can be thought of
as a multivariate generalization of the Logit-Normal with a
diagonal covariance matrix.

When fitting models that incorporated JOLs or MRI data
we also estimated the means and variance parameters for the
Gaussian (truncated for JOLs) observation likelihood from
each latent state. For the JOL distributions, each µJOLs was
drawn from a Normal(.5, .5) and each σJOLs was drawn from
Inverse-Gamma(1, 2). Similarly, for each fMRI feature ni

(see below) in state s, µMRIni
s was drawn from a Normal(0,

1) and σMRIni
s was drawn from an Inverse-Gamma(1, 2).

fMRI feature selection. After standard MRI preprocess-
ing [12], we selected data for inclusion in the model. We
reduced the dimensionality of the fMRI data using group
spatial independent components analysis (ICA) using the
ICASSO algorithm as implemented in the GIFT ICA tool-
box (http://mialab.mrn.org/software/gift/) [10, 39]. This
procedure, which is blind to trial information and memory
outcome, resulted in a set of 60 independent components
that are characterized by a particular temporal (the time-
course of activation) and spatial (the loading of each compo-
nent on fMRI voxels) profile for each participant. Compo-
nents that were unstable across estimations (ICASSO) and
components associated with signal from ventricles or mo-
tion were discarded leaving 43 independent components for
inclusion as model features. Individual trial activations for
each identified component were summarized as the mean of
timepoints encompassing 4-6 seconds post-stimulus onset (to
account for the temporal lag in the BOLD response), result-
ing in one activation value for each trial in each component
for each MRI participant.

Model estimation. We used MCMC sampling via the
NUTS algorithm as implemented in Stan [32] to estimate
the posterior over the parameters (4 chains of 200 itera-
tions; 100 per chain discarded as burnin; 400 total samples
per parameter). To ensure convergence, we checked that

estimates of the probability of recall had low R̂ values (a
measure of whether the sampling chains are converging to
similar estimates) [33, 19].

Model evaluation. In order to compare models, we want
to evaluate how well our models will predict new, unseen



data. It is generally agreed that the generalization method
with the fewest assumptions is leave-one-out cross valida-
tion, which is preferred when sufficient data and computa-
tional resources are available [40]. To conserve on computa-
tional resources, here we use K-fold cross validation, setting
K to 10. Because our goal is to assess the utility of incor-
porating MRI signals into a memory model, the held-out
data only included data from the 20 fMRI subjects. We di-
vided up the data from these subjects into ten equally sized
folds. We then trained ten versions of each model where the
training set consisted of all of the data from behavior-only
subjects and nine of the ten folds of the fMRI subjects. On
the held-out test set, we used the identity of the words and
the trial timings (and JOL or fMRI observations, where ap-
propriate) to generate the posterior probability of recall for
each held out word at the time of test.

As we are primarily interested in our ability to classify a
new piece of data as successfully recalled or not rather than
the log likelihood of the trial under the model, we adopted
a cross-validated area under the ROC curve metric (ROC-
AUC). The ROC-AUC can be interpreted somewhat like
an accuracy measure where 0.5 represents chance prediction
and higher values indicate better predictive performance of
the model. Using ROC-AUC allows us to compare the held-
out predictive performance of models with varying numbers
of parameters while providing a metric of model performance
that is relatively insensitive to class imbalance and does not
prioritize one kind of error over another (e.g., trading off Hits
versus Misses). The model ROCs were defined by calculat-
ing, in each cross validation fold, the proportion of predicted
as remembered trials that were recalled correctly (Hits) and
the proportion of predicted as remembered trials that were
not (False Alarms) at each level of posterior recall probabil-
ity given by the model.

Model Comparison. We fit three variants of each of the
two- and three-state models: a Recall model fit to trial tim-
ing and recall performance (the binary recall success scores
for each word); a model fit to trial timing, recall perfor-
mance, and JOL observations (Recall+JOL); and a model
fit to trial timing, recall performance, and fMRI observa-
tions (Recall+MRI ). In each case the training data included
data from all of the behavioral participants and a subset of
the MRI participant data, and models were evaluated on
held-out data. The logic of these comparisons is to see if the
models incorporating additional observations (Recall+JOL
and Recall+MRI ) provide a better basis for prediction than
do the purely behavioral models. In addition, we are inter-
ested in whether the model incorporating MRI observations
is able to outperform the model incorporating JOLs. This
would suggest that the brain data contains more information
relevant about memory performance than do people’s own
self-reports about their memory fidelity. While we are ul-
timately interested in held-out predictive performance, the
models do differ in model complexity. In raw numbers, for
the two-state models, the Recall model had 2 x 45 word pa-
rameters and 4 hyperparameters, the Recall + JOL model
added 4 parameters, and the Recall + MRI model added
4NfMRI parameters. For the three state models, the Recall
model had 4 x 45 word parameters and 7 hyperparame-
ters, the Recall + JOL model added 6 parameters, and the
Recall + MRI model added 6NfMRI parameters. However,

Table 1: Cross validated Area Under the Curve of
the Receiver-Operating Characteristic (ROC-AUC)
with ± standard error (in parentheses) across folds.

two-state model three-state model

Recall 0.64 (.02) .64 (.02)
Recall+JOL 0.73 (.01) .73 (.01)
Recall+MRI 0.72 (.02) .75 (.01)

due to the hierarchical nature of these models, the effective
number of parameters may have differed depending on the
amount of regularization done by the hierarchical prior.

4. RESULTS
4.1 Two-state model
For each variant of the two-state model (Recall, Recall+JOL,
Recall+MRI ) we computed the ROC-AUC for predictions of
recall accuracy in held-out trials for the MRI participants.
The Recall model, trained on the timing of study and test
trials and recall performance, achieved a mean (across held-
out folds) ROC-AUC of 0.64 (±.02), providing an above
chance baseline model against which to evaluate the utility
of JOL and fMRI observations (Figure 4A).

The Recall+JOL, which adds judgments of learning to both
the training and evaluation of the Recall model, achieved
a mean held-out ROC-AUC of .73 (±.01), improving our
predictions relative to the Recall model. This shows that
metacognitive judgments collected from individuals at the
end of a learning session can be used to refine predictions
about held-out recall performance.

We next assessed whether fMRI signals recorded during study
events could be leveraged to make predictions about held-
out performance. The Recall+MRI model yielded a held-out
ROC-AUC of 0.72 (±.02). Although the held-out perfor-
mance did not surpass the Recall+JOL model, this result
indicated that there may be information in the MRI mea-
surements that could be used to make predictions about
held-out memory recall performance.

4.2 Three-state model
We next considered whether a more elaborated model of
memory could leverage more subtle dynamics of the fMRI
data.6 The held out ROC-AUCs for the Recall and Re-
call+JOL three-state models did not differ from those ob-
served in the two-state model (Figure 4B). However, the
three-state MRI model boosted the held-out AUC to .75
(±.01) which was an improvement compared to the original
two-state Recall+MRI model. This was also, in terms of
held-out predictions, the most successful model we consid-
ered in these comparisons (but see Conclusions), building
confidence in the utility of incorporating neural signals into
knowledge tracing models.

6Although our primary interest in this work is evaluating
the held-out predictions of our models, we note that com-
plexity of the three-state model means that three-state Re-
call or Recall+JOL variants may not be identifiable due to
the sparseness of observations (a single recall outcome or
the recall outcome and a single JOL) [37, 17] However, for
the MRI participants we have data for every trial, enabling
estimation of a three-state Recall+MRI model.



two-state held-out ROCsA

B

1.00.80.60.40.20.0
False Positive Rate

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

Recall+MRI (AUC=0.72 +/- .02)
Recall+JOL (AUC=0.73 +/- .01)
Recall-only (AUC=0.64 +/- .02)
chance performance (AUC=0.5)

Recall+MRI (AUC=0.75 +/- .01)
Recall+JOL (AUC=0.73 +/- .01)
Recall-only (AUC=0.64 +/- .02)
chance performance (AUC=0.5)

three-state held-out ROCs
1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Figure 4: ROC curves for held-out predictions in each of

the two-state (panel A) and three-state (panel B) model

variants (Recall, Recall+JOL, Recall+MRI ). The curves

show the mean ± sem across each of the cross validation

folds.

In addition, whereas the Recall and Recall+JOL models did
not discriminate between the two- and three-state models,
the fMRI data enabled better predictions using the three-
state model, highlighting the utility of neuroimaging data
in selecting between cognitive models.

4.3 Relating model dynamics to the brain
In addition to the improvements in memory prediction af-
forded by joint modeling of behavioral and neural data, our
approach also allows for examination of fMRI data in light
of the estimated models. Figure 5 presents two example
analyses in this vein.

Figure 5A shows the contrast map resulting from regressing
the change in posterior probability of sK associated with
each study trial (as estimated in the two-state Recall model)
against the fMRI time-series in each voxel. Using the esti-
mated two-state Recall model parameters, we extracted the
state posteriors on each study event for the MRI partici-
pants based on the sequence and timing of study trials. We
then calculated the change in predicted state posterior from
just before to just after a study trial and used this change as
the predictor for brain activations. This analysis is related
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Figure 5: Examples of using estimated model to ana-

lyze the brain. A) Coronal slice showing left anterior

hippocampal voxels tracking the change in sK state pos-

terior for each study trial. B) Topography (left; axial

slice) and posterior predictive distributions (right) for

MRI activations from most informative component in

the three-state model. Individual traces show the distri-

butions for each fold of the cross validation

to the General Linear Model approach often used in the
subsequent memory literature, except that rather than us-
ing binary regressors that coded for remembered or forgotten
outcomes as determined by a recall test, we used the esti-
mated continuous state posteriors from the two-state model.

Using a knowledge tracing model in this way to provide es-
timates of when a particular item is learned during a study
sequence with multiple repetitions allows for more sensitive
analyses of the brain’s relationship to cognitive processes
unfolding over extended time. Interestingly, we found that
the voxels significantly correlated with the change-in-state-
posterior regressor were a cluster in left anterior hippocam-
pus, consistent with the hypothesized role for this region in
encoding new information into memory [13].

An alternative way to use the fitted models is to examine the
estimated fMRI features’ observation likelihoods for each la-
tent knowledge state. The Recall+MRI model included acti-
vation from a number of independent components as candi-
date neural features. After estimating the model, the fMRI
observation parameters can be used to assess which compo-
nents provided information about the latent model states.
Used in this way, the joint model can be used as a tool for
understanding how complex cognitive dynamics, especially
those that might not be apparent in a more conventional
analysis (e.g., a traditional subsequent memory analysis that
only considers activation at the time of study and perfor-
mance at the time of test), are instantiated in the brain.
The most informative component in our model was associ-
ated with voxels in lateral occipital and fusiform gyrus re-
gions involved in processing complex visual inputs, as shown
in an axial slice through the brain (anterior/posterior of the
brain is up/down in the image) in figure 5B. The poste-
rior predictive distributions for component activation condi-
tioned on model state are also shown in figure 5B, and these
estimated distributions showed stronger activation for items
in the K or P states relative to U.

5. CONCLUSIONS
We evaluate a framework for integrating neuroimaging record-
ings into a knowledge tracing model. Our approach builds
upon recent reports showing robust memory-related signals
in the brain. We collected a medium-sized data set of hu-
man participants performing a second-language acquisition



task both inside and outside a scanner. We then compared
a variety of models on their ability to predict held out data
for the MRI participants. Our most predictive model was a
three-state hidden Markov model that incorporated neural
measurements. This is interesting because this model was
more predictive than alternative approaches that leveraged
participants’ self-assessment of their learning (JOLs). One
conclusion from this analysis is that there seem to be mea-
surable signals in the brain that index the quality of memory
with higher fidelity than people’s own introspective access.

We also observed that the use of fMRI measurements en-
abled discriminating between models that were equivalent
when using behavioral data (recall or JOL) alone. Whereas
the held-out performance of the two- and three-state mod-
els was the same for the Recall and Recall+JOL model vari-
ants, using fMRI data to inform the model estimation re-
vealed an improvement for the three- compared to the two-
state model. This result points to the ways in which joint
modeling of behavioral and neural data can afford insights
into cognitive dynamics that might not be available to re-
searchers focusing on more restricted kinds of data.

Although the results are promising, our assumptions about
the fMRI data at this stage are simplistic. For example, our
model assumed that the distribution of fMRI signals was
stable across time. However, it is well known that fMRI
signals often show a pattern of repetition suppression [20]
where the measured BOLD signal is systematically lower on
subsequent presentations of an item. A more sophisticated
analysis of the brain may lead to improvements in our mod-
els. Another particularly interesting direction is to attempt
to model individual learner abilities (c.f., [42, 23]) on the
basis of patterns of brain activity given the large variance in
overall performance across participants (see Figure 1).

Modifications to the model structure might also improve pre-
dictions. As an example, in ongoing work we estimated the
three-state Recall+MRI model but modeled the fMRI ob-
servations as arising from transitions between states rather
than from the states themselves (i.e., each fMRI component
has a distribution of activations associated with staying in a
state and another distribution associated with switching be-
tween states). The three-state version of this Recall+MRI-
Transition model yielded a held out AUC of 0.77 (±.02),
which is our best performing model to date. This shows
that there is certainly more signal we can exploit from the
data by improving our generative model of the fMRI sig-
nal. Attempts to improve the fMRI modeling and explore
different model structures are continuing.

We have also illustrated several ways in which this kind of
simultaneous modeling approach might feedback to our un-
derstanding of the role of the brain in supporting learning
and memory. Using a model-based regressor coding for the
change in posterior probability of latent knowledge states,
we identified a significant effect in a left anterior hippocam-
pus region that is known to be involved in memory formation
on the basis of past studies [13]. The similarities between
this novel analysis approach and past cognitive neuroscience
studies give converging evidence about the hypothesized role
of these regions. We also used our estimates of the fMRI ob-
servation distributions to examine the relationship between

fMRI activation arising from different neural components
and the latent knowledge states instantiated in the model(s),
which is a novel approach to understanding the way psycho-
logical mechanisms or processes may be implemented in the
brain.

While we acknowledge the practical limitations of acquir-
ing neuroimaging data in an educational setting – although
advances in EEG technology and the established ability to
measure subsequent memory signals with EEG may enable
such use in restricted settings [18, 15] – overall we believe
this work represents an encouraging first step for knowledge
tracing approaches that utilize indirect neural information
as opposed to explicit tests.
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