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The transformation of experiences into meaningful events and memories is intertwined with the notion of
time. Temporal perception can influence, and be influenced by, segmenting continuous experience into
meaningful events. Episodic memories formed from these events become associated with temporal informa-
tion as well. However, it is less clear how temporal perception contributes to structuring events and organiz-
ingmemory: whether it plays a more active or passive role, and whether this temporal information is encoded
initially during perception or influenced by retrieval processes. To address these questions, we examined
how event segmentation influences temporal representations during initial perception and memory retrieval,
without testing temporal information explicitly. Using a neural measure of temporal context extracted from
scalp electroencephalography in human participants (N= 170), we found reduced temporal context similar-
ity between studied items separated by an event boundary when compared to items from the same event.
Furthermore, while participants freely recalled list items, neural activity reflected reinstatement of temporal
context representations from the study phase, including temporal disruption. A computational model of epi-
sodic memory, the context maintenance and retrieval (CMR) model, predicted these results, and made novel
predictions regarding the influence of temporal disruption on recall order. These findings implicate the
impact of event structure onmemory organization via temporal representations, underscoring the role of tem-
poral information in event segmentation and episodic memory.
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We anticipate that these results will generalize beyond the current subject

pool of young adults, aged 18–30 and primarily from Philadelphia universi-
ties, to young adults in general. On a behavioral level, online populations
exhibit similar behavioral results of temporal contiguity and free recall
(e.g., Mulligan et al., 2022; Mundorf et al., 2021). On a neural level, we
also anticipate the findings to generalize across young adult populations
and to other recording techniques. We chose brain regions from a study
which found mnemonic activity consistent across scalp EEG and intracranial
EEG, where the latter was collected with a broader range of ages and geo-
graphic locations than PEERS (Burke et al., 2014; Long et al., 2014). We
next consider the generalization of the stimuli, which in the current study
were common nouns such that each word can be considered its own episodic
memory. Although these simple stimuli were tested within minutes after
being studied, we expect the behavioral results to generalize to other types
of stimuli and longer timescales. First, our work builds on findings of the
behavioral temporal contiguity effect, which generalizes to autobiographical
experiences and timescales of months or years (Cortis Mack et al., 2017;
Moreton & Ward, 2010; Uitvlugt & Healey, 2019). Second, behavioral
results of event segmentation with more dynamic stimuli and longer time-
scales are consistent with studies using simple stimuli (for recent reviews
see Clewett et al., 2019; Frank et al., 2020; Radvansky & Zacks, 2017).
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published articles using the retrieved context model framework to account for
free recall phenomena. M. Karl Healey had recently analyzed EEG correlates

of context reinstatement, and also had published articles with the retrieved
context model framework. The first authors’ main ideas were developed,
refined and framed conceptually thanks to the other two authors.
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Public Significance Statement
Our internal, subjective representation of an experience is not always an accurate depiction of what actu-
ally occurred. This article examines two types of representations which are susceptible to inaccuracy:
memory for events and the perception of time. When there is a salient change in the environment,
this can cause memory for information prior to the change to be more weakly associated to information
occurring after the change. The salient change can also lead to the perception that more time has passed.
However, it is less clear if temporal information directly influences memory, or plays a more passive
role. We examined a direct link between the role of salient changes, temporal perception and memory.
Subjects studied words and then had to recall the words frommemory. To measure temporal perception,
we examined brain activity while subjects performed these tasks. When there was a change study task,
color and font of thewords, this led to a larger update in subjects’ representation of time. Brain activity of
temporal representations when subjects studied a word were reinstated when subjects recalled the word
from memory, including the larger updates after changes. These changes also influenced the order in
which subjects recalled words from studied lists. The results suggest that temporal information plays
a primary role in updating and organizing memories.

Keywords: electroencephalography, episodic memory, event segmentation, free-recall

An overarching question in cognitive psychology and neurosci-
ence is how the external environment is transformed into internal
representations. This question is key to understanding the transition
from sensory processing to subjective perception, as well as how
perceptual processes interact with memory. Temporal context—the
representation of item features surrounding but not comprising the
item itself—is a defining feature of episodic memory (Tulving,
1972), which helps account for many episodic memory phenomena
(e.g., Healey & Kahana, 2016; Howard et al., 2009; Logan, 2021;
Lohnas & Healey, 2021; Lohnas & Kahana, 2014b). Temporal con-
text also plays a role in perception, as a change in nontemporal fea-
tures can lead to longer prospective temporal judgments (e.g., Block,
1982; Ezzyat & Davachi, 2014; Faber & Gennari, 2017; Lositsky et
al., 2016). Further evidence for a common role of temporal context in
both memory and perception comes from studies examining how
continuous ongoing experience is structured into events (Kurby &
Zacks, 2008; Radvansky & Zacks, 2014; Zacks et al., 2007):
items in different events not only tend to be linked more weakly in
memory (e.g., Ezzyat & Davachi, 2014; Heusser et al., 2018;
Speer & Zacks, 2005; Zwaan, 1996), but also tend to be perceived
as occurring further apart in time (Clewett et al., 2020; DuBrow &
Davachi, 2013; Ezzyat & Davachi, 2014; Faber & Gennari, 2017;
Lositsky et al., 2016). However, prospective temporal judgments
may involve different cognitive mechanisms than retrospective tem-
poral judgments (Grondin, 2010; Pöppel, 1997), leaving unclear
how transient changes in temporal information may inform persis-
tent changes in memory representations. Furthermore, there is no
consensus on whether temporal information is secondary or primary
in structuring events and organizing memories.
Despite increasing interest and open questions regarding the inter-

section between these phenomena (Clewett et al., 2019; Frank et al.,
2020; Radvansky & Zacks, 2017), few studies have directly exam-
ined the three-way interaction between temporal perception, mem-
ory, and event segmentation. Here we consider these interactions,
examining how endogenous temporal information and event seg-
mentation interact to organize memory. We present a computational
model which formalizes how event boundaries influence temporal
information and memory representations. We verify novel predic-
tions of this model using human behavior and neural activity,

confirming the impact of event structure on the temporal representa-
tions during memory encoding and retrieval.

Event Segmentation and Episodic Memory

On a behavioral level, there is a wealth of data suggesting that
stimuli presented at the same event share stronger associations in
long-term memory than stimuli presented in different events
(DuBrow & Davachi, 2013, 2014, 2016; Ezzyat & Davachi, 2011,
2014; Heusser et al., 2018; Speer & Zacks, 2005; Zwaan, 1996).
For instance, recognition of recently presented information is
worse with a change in event, or event boundary, between presenta-
tion and test (Swallow et al., 2009, 2011). Neural data corroborate
these findings, as neural activity for pairs of stimuli from the same
event is more similar than for stimulus pairs from different events
(Baldassano et al., 2017; DuBrow & Davachi, 2013, 2014; Ezzyat
& Davachi, 2014; Hsieh et al., 2014; Lositsky et al., 2016;
Schapiro et al., 2013). Furthermore, brain activity in mnemonic
brain regions (e.g., hippocampus) is greater during retrieval of
items from another event rather than the current event (Swallow et
al., 2011), suggesting that retrieval might be more effortful for infor-
mation outside of the current event. Taken together, these results
suggest that associations are weaker between memories separated
by an event boundary, and that overcoming such weakened associa-
tions may require more effortful retrieval.

Why might an event boundary weaken associations in memory?
One possibility is that stimuli separated by an event boundary may
simply share fewer common perceptual or categorical features
(Clewett et al., 2019; Zacks et al., 2001). For instance, event bound-
aries may be caused by physical changes to the environment, such as
a change in background scene (Zacks et al., 2007). As another exam-
ple, DuBrow and Davachi (2014) found evidence that items within
the same event form strengthened associations, which can then sup-
port reinstatement of one another and their shared event information.
In particular, participants made a recency judgment between two
items previously studied with the same category and task. On a neu-
ral level, the category of the intervening items was decoded using
whole brain multivariate pattern analysis (Norman et al., 2006),
and classifier performance predicted the category of these
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intervening items. On a behavioral level, DuBrow & Davachi
(2014) posited that, if testing items from the same event evokes
event-level reinstatement, then this reinstatement should facilitate
memory recognition of other items from that event. Consistent
with this hypothesis, participants recognized an item more quickly
when it was preceded by a recency judgment of other same-event
items. Taken together, these results reflect the strong associations
between items within an event, and how such associations promote
memory reinstatement of event-related information. Studies using
television episodes, rather than discrete stimuli, have also found
such neural evidence of event-level reinstatement (Baldassano et
al., 2017; Chen et al., 2017; Zadbood et al., 2017). Although these
studies provide support for the stronger associations between items
within an event due to their shared features, this explanation is not
mutually exclusivewith an alternate account, which we next explore:
event boundaries weaken temporal associations.

An Emerging Role of Temporal Context in Event
Segmentation and Episodic Memory

Supporting the notion that event boundaries may weaken tempo-
ral associations across items, stimuli separated by event boundaries
are perceived as occurring farther apart in time than stimuli occur-
ring in the same event (Ezzyat & Davachi, 2014; Faber &
Gennari, 2017; Lositsky et al., 2016). Also suggestive of the impor-
tance of temporal information to event structure, if participants are
informed that a long amount of time has passed in a narrative, irre-
spective of other stimulus changes, they are more likely to perceive
this as an event boundary in the narrative (Ezzyat & Davachi, 2011;
Speer & Zacks, 2005; Zwaan, 1996). Of course, it is possible that
changes in temporal information are a by-product of an event boun-
dary, rather than a necessary component. Furthermore, most studies
define event boundaries with changes in stimulus or context features,
and thus do not separate temporal context from nontemporal context.
This motivates our current study of the interaction between temporal
associations, memory and event segmentation. We next review stud-
ies which provide evidence that event boundaries weaken temporal
associations when changes in stimulus features are minimized.
In a series of studies with more controlled changes to stimuli

between events, DuBrow & Davachi (2013, 2014) found that
event boundaries influenced memory performance and memory rep-
resentations. They defined an event as a sequence of presented stim-
uli from the same semantic category and with the same encoding
task. In each list, they presented participants with sequences of
items, switching back and forth between the two categories and
tasks. Critically, they tested participants with pairs of items, where
each pair contained items from the same category and task, but
only a subset of pairs were from the same event. With these test stim-
uli, participants exhibited less accurate recency judgments for item
pairs across events than within event. This suggests that weakened
associations across events are not completely a by-product of
fewer shared stimulus features, and points to an important role of
temporal information. However, these studies still leave unresolved
how and when temporal information influences, or is influenced by,
event structure in memory.
Polyn et al. (2009a, 2009b) examined the contributions of tempo-

ral and nontemporal features to event structure using model simula-
tions. Although they did not frame their results in terms of event
boundaries, like the DuBrow and Davachi studies, participants

studied items with one of two encoding tasks, and thus a sequence
of items with the same task can be operationalized as an event.
Critically, to distinguish between event-level and temporal informa-
tion, Polyn et al. (2009a) examined predictions of a computational
model of episodic memory, the context maintenance and retrieval
(CMR) model. CMR assumes that two types of context are updated
whenever an item is studied or retrieved: (a) temporal context,
reflecting the surrounding temporal information of a given item;
(b) task or source context, implemented experimentally as an encod-
ing task. In this way, all items within the same event share similar
source context and similar temporal context. By contrast, two neigh-
boring items separated by an event boundary have similar temporal
contexts yet distinct source contexts. Two temporally distant items
may share the same source context, even though they were presented
in different events. Polyn et al. (2009a) compared two variants of the
CMRmodel: (a) one variant assumed that an event boundary evokes
a change to source context only; (b) another variant assumed that an
event boundary evokes a change to source context as well as a dis-
ruption to temporal context. The second CMR model variant made
more accurate predictions of participants’ memory performance,
and hereafter we refer to this model variant as CMR.

The success of this model variant suggests that an event boundary
imposes a perceived shift or disruption in temporal information,
even when accounting for differences between stimuli occurring in
different events. These results underscore the critical role of tempo-
ral information in event representation, both in the moment and in
mnemonic representations. These results suggest that temporal infor-
mation is not just a secondary by-product of event segmentation, but
rather may play a critical role in structuring events. Nonetheless,
CMR only predicts behavior based on its assumptions of memory
representations, and these assumptions may be incorrect. Thus, we
sought to examine CMR’s predictions using brain activity as well
as behavior. Furthermore, we compared predictions of CMR to the
less successful model variant which does not assume that an event
boundary evokes a change to temporal context.

The Current Study

Thus far, we have reviewed how event segmentation influences
memory, and studies dissociating the contributions of temporal
and nontemporal information to event boundaries and memory.
An understanding of the interactions between event segmentation
and memory remains incomplete without appreciating the role of
temporal information. Specifically, it is critical to distinguish
between the possibility that temporal representations are a defining
feature of stimuli, and thus influenced by event boundaries, from
the possibility that temporal perception effects are a by-product of
changes to other stimulus features. Distinguishing between these
possibilities is not only important in event segmentation, but more
broadly may inform the role of temporal information to other percep-
tual and memory paradigms.

Critically, to the best of our knowledge, no research directly links
the impact of event segmentation at study, including its impact on
temporal disruption, to neural and behavioral measures of memory
retrieval. Here we examined these relationships among memory
behavior and a neural measure of temporal context (Folkerts et al.,
2018; Howard et al., 2012; Manning et al., 2011; Manns et al.,
2007). This neural measure allowed us to assess how temporal con-
text states from study were reinstated during memory retrieval to
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influence behavior. To minimize nontemporal contributions to event
boundaries, stimuli comprising the events and the event boundaries
were kept as simple as possible. In particular, participants studied
lists of words in which each word was associated with an encoding
task or no task, with the task for a given word was indicated by a
unique font, color, and case. Events were operationalized within a
list as a sequence of items with the same encoding task, and a change
in event was signified both by the change in task and the visual change
in studied words. Previous studies have also used color to operation-
alize events, by simply changing a color frame surrounding a gray-
scale image (Heusser et al., 2016, 2018). Other studies have used
encoding tasks, in conjunction with other stimulus feature changes,
to promote event segmentation (DuBrow & Davachi, 2013, 2014,
2016; Ezzyat & Davachi, 2014; Polyn et al., 2009a, 2009b). Taken
together, the current study induces event structure while minimizing
changes to stimulus features, thus allowing a more direct test of tem-
poral information on event segmentation and memory.
CMR provides a very good testbed to examine the links between

memory, temporal information and event cognition. CMR is a model
of episodic memory sharing many assumptions with theories of
event cognition (e.g., DuBrow & Davachi, 2014; Ezzyat &
Davachi, 2014; Faber & Gennari, 2017; Frank et al., 2020;
Lositsky et al., 2016; Swallow et al., 2009). CMR assumes that
each studied item is associated with a slowly changing temporal con-
text, as well as a source context reflecting the task features of the
items within a shared event. Thus, CMR simulations allowed us to
disentangle the interactions between temporal representations and
event segmentation. Comparing participants’ data to CMR predic-
tions also allows for a more specific characterization of the temporal
representations—whether they might rely on local positional infor-
mation of items within an event or list, or whether they might rely
on a more global temporal code.
We compared CMR predictions to data averaged across partici-

pants and examined individual variability across participants. If tem-
poral disruption underlies event segmentation and memory
representations, then we expect (a) accurate predictions from the
CMR model; (b) a disruption to temporal information at study
should manifest in neural activity and behavior during recall. To
test these hypotheses, we present novel analyses of a neural correlate
of temporal context, as posited by the CMR framework (Manning et
al., 2011), as well as analyses of memory behavior which have been
used to assess variants of the CMRmodel (Kahana, 1996; Lohnas &
Kahana, 2014a; Polyn et al., 2009a; Sederberg et al., 2008). We gen-
erated CMR simulations and predictions from another dataset and its
associated best-fit model parameters. We found that CMR predic-
tions were upheld in averaged data from the current study, and par-
ticipant variability was consistent across predicted measures.
Furthermore, CMR predictions were more accurate than amodel var-
iant which does not assume that event boundaries evoke temporal
context disruptions. Our results clarify how event segmentation
impacts temporal representations during memory encoding and
retrieval, influencing perception and memory.

Method

Dataset

The data reported here are from the Penn Electrophysiology of
Encoding and Retrieval Study (PEERS), which involved three

subsequently administered multi-session experiments from 2010 to
2016. PEERS is a large database on the electrophysiological corre-
lates of memory encoding and retrieval (Kahana et al., 2022).

Participant Characteristics

The present study considered the 172 younger adults (age 18–30)
who completed Experiment 1 of PEERS. Participants were right-
handed native English speakers.

Sampling Procedures

Participants were recruited through a two-stage process. First,
right-handed native English speakers were recruited for a single ses-
sion to introduce participants to EEG recordings and the free recall
task. Participants who did not make an excess of eyemovements dur-
ing item presentation epochs of the introductory session and had a
recall probability of less than 0.8 were invited to participate in the
full study. Approximately half of the participants recruited for the
preliminary session qualified for, and agreed to participate in, the
full study. Participants were consented according the University of
Pennsylvania’s IRB protocol and were compensated for their
participation.

Data Diagnosis

One participant was excluded for not having a neural measure of
temporal context in any session (see definitions below and Figure 1),
and another was excluded from all behavioral and neural analyses for
making too few (, 10) critical recalls (see Figure 4 and surrounding
text). This participant had seven such observations in total, whereas
the next fewest participants had 15. For this latter participant,
because most analyses include recall behavior, for consistency we
excluded this participant from all analyses, rather than from just
the recall analyses.

Data Collection

Participants completed sessions each with 16 free recall lists. For
each list, 16 words were presented one at a time on a computer screen
followed by an immediate free recall test. Generally participants com-
pleted six sessions, but data collection was incomplete for one session
each for five participants. Based on our criteria of only including ses-
sions with autocorrelated feature vectors (see Neural Feature
Selection), five participants had two included sessions, eight partici-
pants had three included sessions, 24 participants had four included
sessions, 50 had five included sessions, and 83 had six included ses-
sions. Additional memory tests were administered in each session
after immediate free recall of the final list. However, we do not report
results from those tests so omit further detail about them.

Each word was accompanied by a cue to perform one of two judg-
ment tasks, either a size judgment task (“Will this item fit into a
shoebox?”) or an animacy judgment task (“Does this word refer to
something living or not living?”) or no encoding task. The current
task was indicated by the color, font, and case of the presented
item. There were three conditions: no-task lists (participants did
not have to perform judgments with the presented items), single-task
lists (all items were presented with the same task), and two-task lists
(items were presented with either task). In the two-task lists, items
were presented successively with the same task in trains of two to
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six items, with train length chosen randomly. The first two lists were
two-task lists, and each list started with a different task. The next
fourteen lists contained four no-task lists, six one-task lists (three
with each task), and four two-task lists. List and task order were
counterbalanced across sessions and participants.
Each word was drawn from a pool of 1,638 words (available at

https://memory.psych.upenn.edu/files/wordpools/PEERS?wordpool
.zip). Lists were constructed such that varying degrees of semantic
relatedness occurred at both adjacent and distant serial positions.
Semantic relatedness was determined using the Word Association
Space (WAS) model described by Steyvers et al. (2004). WAS sim-
ilarity values were used to group words into four similarity bins
based on the similarity between word pairs (high similarity,
cosθ. 0.7; medium–high similarity, 0.4, cosθ, 0.7; medium–

low similarity, 0.14, cosθ, 0.4; low similarity, cosθ, 0.14).
Two pairs of items from each of the four groups were arranged

such that one pair occurred at adjacent serial positions and the
other pair was separated by at least two other items.

For each list, there was a 1,500 ms delay before the first word
appeared on the screen. Each item was on the screen for 3,000 ms,
followed by jittered (i.e., variable) inter-stimulus interval of 800–
1,200 ms (uniform distribution). If the word was associated with a
task, participants indicated their response via a keypress. After the
last item in the list, there was a jittered delay of 1,200–1,400 ms,
after which a tone sounded, a row of asterisks appeared, and the par-
ticipant was given 75 s to attempt to recall aloud any of the items
from the most recent list.

Electrophysiological Recordings

Netstation was used to record EEG from Geodesic Sensor Nets
(Electrical Geodesics, Inc.) with 129 electrodes. The signal from

Figure 1
Calculating a Neural Measure of Temporal Context

Note. Based on the core assumptions of retrieved context models, the temporal context state of a studied item should (a) be a slowly changing
representation of temporal context from earlier studied items; (b) be reinstated if the item is recalled. (A)We first calculated oscillatory power from
electroencephalography (EEG) activity recorded for each studied item or recalled item in control lists. In the upper right panel, the 42 electrodes
included in the event vectors are circled in dark gray on the electrode map. L= left, P= posterior, R= right, and A= anterior. (B) By applying
PCA, we selected features accounting for a significant amount of variance in the EEG recordings. (C) To meet the first criterion of a slowly chang-
ing representation, we next determined which of the PCA features were autocorrelated across studied items. (D) To verify the second criterion of a
neural measure of temporal context, we next needed to examine this neural signature at recall. Thus, having established a slowly changing neural
signature from study of selected PCA features, we then applied those same feature vectors from study events to the recall events. (E) We assessed
whether a studied item’s feature vectors were reinstated when the itemwas recalled, by calculating the encoding-retrieval similarity (ERS) between
each recalled item’s temporal context and temporal context states from study. Retrieved context models predict that the similarity between a
recalled item’s retrieved temporal context and temporal contexts at study should be greater for items studied nearby in time, or smaller absolute
lag, to the study position of the recalled item (see also Figure 2C and D).
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all electrodes was digitized at 500 Hz by either the Net Amps 200 or
300 amplifier and referenced to Cz. Prior to any data processing,
recordings were rereferenced to the average of all electrodes except
those with high impedance or poor contact with the scalp. To elim-
inate electrical line noise, a first order 2 Hz stopband Butterworth
notch filter was applied at 60 Hz.
We excluded any recalls that occurred within 1,000 ms of the next

recall to prevent overlap of the neural activity between these recalls.
In both the neural data and the behavioral data, we excluded recalls
from output positions 1–3, as such recalls may reflect recall from
short-term memory in immediate free recall (Kahana, 1996), and
such earlier immediate recalls may have shorter latencies (Kahana,
2012; Murdock & Okada, 1970). We calculated spectral power
from 42 of the 129 electrodes (Figure 1), including electrodes in
regions established in successful memory encoding (Long et al.,
2014; Long & Kahana, 2017; Weidemann et al., 2009): bilateral
anterior superior (corresponding to dorsolateral prefrontal cortex),
bilateral anterior inferior (corresponding to inferior frontal cortex),
and bilateral posterior inferior (corresponding to inferior temporal
cortex). From these electrodes, we calculated spectral power for
each event (defined in the next paragraph) by convolving its EEG
time series withMorlet wavelets (wave number = 6) at each of 46 fre-
quencies logarithmically spaced between 2 and 100 Hz. For each fre-
quency and electrode, power was averaged across the entire
encoding or recall interval. Then, the power values were z-scored
across encoding and recall events separately for each session to
remove the effects of these variables. Thus, each study or recall
event had a corresponding vector of z-scored power values, concat-
enated across 42 electrodes at each of the 46 frequencies.
We computed spectral power for defined events of interest: We

defined encoding events as the timewindow from 200 to 3,000 ms rel-
ative to the onset of each item’s presentation, and recall events as the
time period − 1, 000 to − 600ms relative to the verbalization of an
item. The time window for presentation events was motivated by
the choice of Manning et al. (2011), where the 200ms delay was
meant to account for the time delay between when the word appears
on the screen and the participant begins to process the word, but oth-
erwise activity is considered for the entire duration the word is on the
screen. For the time window of recall events, we evaluated context
reinstatement while varying the onset and duration of the time win-
dow. We evaluated time windows beginning from − 1, 000 to −
500ms relative to the participant’s recall vocalization, ranging in dura-
tion from 300 to 800ms (both ranges were assessed in increments of
100ms). This evaluation of time windows indicated that context rein-
statement was strongest for the recall time window of − 1,000 to −
600ms relative to recall vocalization (see Appendix C).

Neural Feature Selection

We followed the approach of Manning et al. (2011) to determine
patterns of neural activity that change gradually with each studied
word. First, we applied principal components analysis (PCA) to
the set power values across electrodes and frequency bands contrib-
uting to each study or recall event, as described above, using control
lists only (no-task or single-task lists). We excluded from subsequent
analyses those principal components that failed to explain a substan-
tial proportion of the variance according to the Kaiser criterion
(Kaiser, 1960). Next, we quantified the extent to which each princi-
pal component changed slowly with each studied item, based on its

autocorrelation (Equation 1; Figure 1C). If a principal component
was not sufficiently autocorrelated across studied items, it was
excluded because it did not meet the critical criterion of temporal
context, to change slowly with each studied item. In this way, we cal-
culated a set of autocorrelated feature vectors consistent with the
notion of temporal context.

We follow the terminology of Manning et al. (2011) and refer to
such autocorrelated principal components as feature vectors. To
determine which of the components were feature vectors, for each
feature xwithin each list i, we computed the Pearson’s lag 1 autocor-
relation coefficient (ri) and associated P value. We then combined
the autocorrelation coefficients across lists into a summary autocor-
relation measure �r:

�r = F−1
∑L
i

F(ri)

( )
, (1)

where F and F−1 are the Fisher z-prime transformation and Fisher
inverse transformation, respectively. We also computed a summary
measure for P across lists, �p, by applying the inverse Normal trans-
formation to the P values then summing across the transformed P
values. We defined �p as where the sum of the transformed P values
fell on the cumulative normal distribution function. Finally, we used
�r and �p as inclusion criteria, and only included x as an autocorrelated
feature vector if it satisfied �r . 0 and �p , 0.1.

The neural measure of temporal context was considered separately
for each session. If therewere not at least five feature vectors, the ses-
sion was excluded from further neural and behavioral analysis. If the
session produced at least five feature vectors, we applied a PCA
transformation matrix, determined from the control lists, to calculate
temporal context vectors from two-task lists. Of the 1,027 possible
sessions, 1,023 sessions produced feature vectors. Of these sessions,
879 sessions had at least five feature vectors. The threshold of at
least five feature vectors aims to ensure that the feature vectors are
of high enough dimensionality to observe the potential properties
of interest including context reinstatement (Manning et al., 2011).
Furthermore, three of the four sessions with no feature vectors had
lower than average dimensionality from PCA (8, 12, 58;
M + SD = 86.8+ 15.7), and all participants with such sessions
did contribute at least 1 other session to the analyses presented
here. Thus, the lower dimensionality from these sessions may reflect
noisier EEG data, or at least they suggest that they do not reflect
solely participants who fail to exhibit neural features of temporal
context.

Similarity Values

We defined the neural similarity between two feature vectors (in
the participants’ data) or two temporal context vectors (in CMR)
as the cosine of the angle between those two vectors (Manning et
al., 2011). When comparing similarity values between neighboring
items within events versus across events, we only calculated an
item’s similarity to its lag= +1 and lag=−1 neighbors if both
the preceding item and the following item were valid list positions.
Thus, the first list item was never included in similarity value calcu-
lations as the item immediately following an event boundary (which
we term a boundary item), and the last list itemwas never included in
similarity values as the item preceding an event boundary (which we
term a preboundary item).
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Neural Similarity Between Studied Items. As confirmation of
the approach for defining neural similarity during study, we calcu-
lated neural similarity as a function of study lag in control lists
and two-task lists (see Figure A1). When comparing neural similar-
ity during study of two-task lists for within versus across events, we
excluded similarity values of preboundary items in events of two
items, as the across-event similarity was included for the subsequent
boundary item, and the within-event similarity was included for the
preceding boundary item (aside from the first event). We only calcu-
lated within-event similarity for preboundary and boundary items;
otherwise, the within-event similarity measure would include
many more items and may not be as comparable to across-event sim-
ilarity. Finally, for preboundary items for which the across-event
similarity was already included for the boundary item, we only
included this value once as an across-event similarity value (i.e.,
we did not double-count these values).
For calculations neural similarity across lists between item pairs of

the same or different tasks in control lists, we excluded the no-task
lists to make the comparisons between control lists and two-task
lists more comparable, as two-task lists did not include items with
no task.
Encoding-Retrieval Similarity. In addition to the general

exclusion noted above, we did not calculate similarity between a
recalled item and any of its study neighbors which were already
recalled. Including encoding-retrieval similarity (ERS) at study for a
previously recalled itemmay be problematic, as such similarity values
may reflect shared features from retrieval, not from study (cf. Folkerts
et al., 2018). However, this exclusion did not take into account the
items excluded in output positions 1–3 or items recalled less than 1
s earlier than the previous recall, as those items did not contribute
to the initial PCA, and thus presumably did not contribute significant
variability to the neural measure of temporal context.

Analytic Strategy

To compare within-participant conditions across participants with
a large sample size, we used standard paired t tests. We calculated
effect size using a variant of Cohen’s d based on the pooled standard
deviation, using the second, fourth, and fifth equations given on p. 7
of Fritz et al. (2012). The formula for “very similar” standard devi-
ations between groups was used when standard deviations were
within 5% of one another; otherwise, standard deviations were at
least 7% apart from one another, and the formula for standard devi-
ations which “differ” was used.
All correlation analyses used robust regression, a regression mea-

sure less sensitive to potential outliers. Unlike standard Pearson’s
regression, this analysis does not yield the same correlation and sig-
nificance values if the dependent and independent measures are
switched (i.e., the correlation of x and y is not the same as the corre-
lation of y and x). In our analyses, we defined the independent mea-
sure, plotted on the x-axis, as the measure occurring earlier in time.
Our regression analyses were motivated by CMR predictions,
whereby a participant exhibiting a stronger impact of temporal dis-
ruption in neural reinstatement should also exhibit stronger temporal
disruption during study, and stronger temporal disruption in recall
behavior. Thus, for each of our regression analyses we had a hypoth-
esized direction of the correlation, and we report one-tailed p-values.
For comparable comparison between ERS and behavioral

lag-CRPs during recall, we excluded the items recalled at the first

three output positions. Furthermore, for the lag-CRPs in two-task
lists, we considered transitions from a preboundary or boundary
item to any possible item, not just thosewithin the same or neighbor-
ing event. Thus, the colors and legends in Figure 5 is meant to reflect
the most likely transition. However, only neighboring items are
always consistent with the legend. For instance, if a boundary item
is in an event of length 3, then a transition of lag= +4 would not
be to an item in the same event.

Transparency and Openness

The raw behavioral data are available at http://memory.psych
.upenn.edu/files/PEERS.data.tgz and the raw electrophysiology
data are available at http://memory.psych.upenn.edu/mediawiki/
index.php?title=Data˙Request&paper=WeidKaha16. The code used
for the behavioral simulations and analyses is available at http://
memory.psych.upenn.edu/CMR, and the analysis scripts used for
calculating the behavioral lag-CRP analyses is available at https://
github.com/vucml/EMBAM. Remaining materials are available
upon request.

We report howwe determined our sample size, all data exclusions,
all manipulations, and all measures in the study. Because we present
analyses of an existing dataset, the sample size was not determined
specifically for our current set of analyses, and this study was not
preregistered. However, as described above, the large sample size
and large number of observations per participant gave us confidence
that we would have sufficient statistical power for our analyses.
Although analyses of the PEERS dataset have been reported previ-
ously (e.g., Lohnas et al., 2015; Long et al., 2014; Long &
Kahana, 2017; Miller et al., 2012; Weidemann & Kahana, 2016),
all of the analyses presented here are novel.

Results

Temporal Context in Control Lists

We first assessed behavioral and neural measures of temporal con-
text in control lists (see Figure 1). These lists did not impose a strong
event structure because participants performed the same (or no)
encoding task for every studied item in each list (e.g., compare
with Figure 3A). Thus, we used the control lists to assess the contri-
bution temporal information to episodic memory encoding (study)
and retrieval. We then build upon these analyses to address how
event segmentation influences temporal context and memory
organization.

Evidence of Temporal Context in Recall Behavior

After studying each list, participants performed free recall, recalling
as many items as possible from the just-studied list in any order.
Despite the open-ended instructions, recall order tends to reflect the
temporal order in which items were presented (Healey & Kahana,
2014; Healey et al., 2019; Kahana, 1996; Kahana et al., 2008;
Unsworth et al., 2012; Ward et al., 2010). Contributions of temporal
organization can bemeasured by calculating the probability of a recall
transition between two items, based on their difference in serial posi-
tions at study and conditional on their availability (lag-CRP; Kahana,
1996). Figure 2B shows the lag-CRP from the control lists, demon-
strating two ubiquitous and critical features of this function (Kahana
et al., 2008). First, the lag-CRP tends to be greatest at smaller absolute
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lags, indicating the increased transition probability between items
studied nearby each other. Second, the lag-CRP is asymmetric, with
greater transition probability in the forward direction (positive lag)
than the backward direction (negative lag).
Figure 2A presents CMR’s prediction of the lag-CRP and these

two critical features. Rather than find a set of model parameters
which best capture the phenomena of this dataset, here we took a
stricter approach by simulating a dataset and best-fit parameters gen-
erated from another study with a similar experimental design (Polyn
et al., 2009a). This approach shares similarities to the generalization
criterion method, whereby estimates from a dataset with one design
(here, no or single-task lists) are validated using data with a different
design (two-task lists; Ahn et al., 2008; Busemeyer &Wang, 2000).
Here, we consider the model to be “trained” on one dataset, and
“test” model predictions on a different dataset, for both similar
effects to the original dataset as well as novel effects. Before we con-
sider novel predictions of CMR, we first verify that CMR predicts the

same core effects in this study as by Polyn et al. (2009a), despite
some minor differences in experimental procedures between the
two studies. CMR predicts the temporal contiguity effect, or ten-
dency to recall items from smaller absolute lags. CMR predicts
this effect due to its core assumptions that temporal context changes
slowly with each studied item, and recall of an item leads to retrieval
of its associated context states from study. Thus, when the current
context cues recall of the next item, the just-recalled item’s context
forms a part of this retrieval cue. As a result, CMR is more likely to
recall items with shared temporal context states to the just-recalled
item, including that item’s neighbors from study. CMR predicts
the forward asymmetry in the lag-CRP because the context of a par-
ticular item i is incorporated into the context state of item i + 1, and
thus a recalled item generally has a temporal context more similar to
the items presented after it. Taken together, we interpret these behav-
ioral recall dynamics as evidence for a role of temporal context in
control lists.

Figure 2
Behavioral and Neural Correlates of Temporal Context Reinstatement in Control Lists

Note. (A) Predictions of the context maintenance and retrieval (CMR) model of recall transitions in control lists.
The probability of making transitions between successive recalls is plotted as a function of lag, or difference in the
serial positions of the successively recalled items. These response probabilities are determined conditional on which
lags are available for recall. (B) Conditional response probability as a function of lag in the behavioral data. (C)
Encoding-retrieval similarity (ERS) between the temporal context state of a recalled item and the temporal contexts
of its neighbors during study. Lag refers to the distance in serial position between two items from study (see
Figure 1E). CMR predicts that temporal context states will be more similar between the recalled item and neighbor-
ing items from study. (D) CMR’s predictions are upheld when measuring the neural measure of temporal context in
participants’ data. Cond. Resp. Prob.=Conditional response probability. Error bars represent Loftus and Masson
(1994) 95% confidence intervals.
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A Neural Signature of Temporal Context During Study

According to CMR, the behavioral effects in Figure 2 rely on a
temporal context representation which changes slowly with each
studied item (see Figure A1A). We assessed this prediction by defin-
ing an electrophysiological measure of temporal context consistent
with the definitions of Manning et al. (2011). Whereas Manning et
al. (2011) examined temporal context with intracranial EEG, here
we examined temporal context with scalp EEG, which unlike intra-
cranial EEG is noninvasive. To the best of our knowledge, our
results provide the first evidence of a temporal context measure
using scalp EEG. Furthermore, this lays the foundation to then assess
how this neural measure of temporal context interacts with event
structure and memory representations.
The measure of temporal context was designed to meet several cri-

teria consistent with CMR’s assumptions (see “Method” for full
details). Separately for each participant and session, we first defined
a vector of power values for each study event and recall event, where
values were concatenated across a range of frequencies and included
activity from electrodes implicated in mnemonic processing

(Figure 1A; Long et al., 2014; Long & Kahana, 2017; Weidemann
et al., 2009). We then applied PCA to the matrix of power vectors
across study and recall events, and excluded principal components
that contributed a low level of variance in principal components
space (Kaiser, 1960). Next, we quantified the extent to which each
of the included principal components was autocorrelated. We only
used those principal components meeting the threshold for being
substantially autocorrelated across each word presentation, consis-
tent with CMR’s assumption that temporal context changes slowly
with each studied item. Our success in finding such autocorrelated
feature vectors for 171/172 (99%) of participants attests to the valid-
ity of this approach (see also Figure A1B).

As described thus far, although feature vectors have properties
consistent with temporal context, they also have features consistent
with a positional code account, whereby each feature vector would
code the serial position in the list associated with each item
(Anderson & Matessa, 1997; Brown et al., 2000; Burgess &
Hitch, 1999; Farrell, 2012; Henson, 1998). Like feature vectors of
temporal context, feature vectors of positional codes would also be
autocorrelated across items within a list. However, unlike temporal

Figure 3
Disruption of Temporal Context by Event Boundaries During Study

Note. (A) In two-task lists, participants perform one of two encoding tasks with each presented
word (size task or animacy task); a sequence of words with the same task is assumed to comprise
an event, and the change in task is assumed to form an event boundary. Here the sample items
are shown to calculate neural similarity for the neighbors of a preboundary item, as one of its neigh-
bors (the preceding item) was presented within the same event (within), and its other neighbor (the
following item) was presented across a different event (across). Task text is for illustrative purposes
only; to participants this was implicit from the color, font and case of the word. (B) Collapsed across
preboundary and boundary items, CMR predicts that neural similarity is greater between two neigh-
boring items within the same event than two items across different events. (C) Collapsed across pre-
boundary and boundary items, neural similarity is greater between two neighboring items within the
same event than two items across different events. Error bars represent + 1 SE of the mean.
*p, .05. See the online article for the color version of this figure.
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context, a purely positional code would be shared across lists. Thus,
the feature vector of the item in Serial Position i in List j should
exhibit greater similarity to the item in Serial Position i + 1 not
only from the same list j, but also to the item in Serial Position i +
1 in List j + 1 or List j + 2 (Burgess & Hitch, 1999; Conrad, 1960;
Henson, 1996; Osth & Dennis, 2015). By contrast, a temporal con-
text account would predict that the similarity between item i and
items i + 1 should decrease as the number of lists between i and i
+ 1 increases (Howard et al., 2008; Lohnas et al., 2015; Unsworth,
2008). This within-list versus across-list contrast should be most pro-
nounced in neighboring serial positions. Thus, to test this possibility,
we calculated the neural similarity between items with differing
serial positions of lag= 1 and with differing list numbers, that is,
list-lags ∈ {0, 1, 2, 3}. Furthermore, to ensure a reduction across
lists did not reflect differences in source context across lists, we cal-
culated similarity only between pairs of items presented with the
same encoding task and in control lists. Consistent with a temporal
context account, neural similarity was greater for between item
pairs with smaller list-lags (see Figure B1 and surrounding text).
Another way in which positional information might contribute to

the current effects is that early list positions may contribute more to

the positional code than later positions, such that these feature vec-
tors really just reflect drift from primacy positions (Henson, 1998).
However, the autocorrelated property of feature vectors is present
across serial positions, suggesting that this effect is not driven
by positional information from specific serial positions (see
Figure B2 and surrounding text).

It is also important to rule out the possibility that feature vectors
incorporate task information, that is, that they might change slowly
with studied items but not for all task types. We found that
neural similarity in feature vectors changed slowly over time for
each task type and no task (Figure A1C). First, we verified that
neural similarity decreased by lag, being significantly greater
for item pairs with lag= 1 than lags 3–5, in lists with no task
(M = 0.099, SD = 0.040), t(169) = 32.3,CI = [0.0928, 0.1049],
p , .00001, d = 0.64; lists with the size task (M = 0.086, SD =
0.037), t(169) = 30.6, CI = [0.0809, 0.0921], p , .00001, d =
0.56; and lists with the animacy task (M = 0.084, SD = 0.037),
t(169) = 29.9, CI = [0.0787, 0.0898], p , .00001, d = 0.55.

Furthermore, we calculated mean neural similarity between fea-
ture vectors between items of the same or different tasks. If task
information contributed to the feature vectors, then we would expect

Figure 4
Encoding-Retrieval Similarity (ERS) in Two-Task Lists

Note. (A) Calculation of ERS of the current state of context after recall of a preboundary item with its associated neighbors at study: both the
preceding neighbor presented with the same task, and thus within the same event (within), and with its subsequent neighbor across a different
event (across). Task text is for illustrative purposes only; to participants this was implicit from the color, font, and case of the word. (B) CMR
predicts that the retrieval of an item bordering an event boundary (e.g., “plum” in A) leads to retrieval of that item’s temporal context states from
study, including the disruption to temporal context caused by the event boundary. Thus, the current state of temporal context—which incor-
porates the item’s retrieved temporal context—should be more similar to the context of adjacent studied item within the same event (e.g.,
“mop”) than the adjacent studied item from a different event (e.g., “sand”). However, the difference by event relationship is more subtle
than during study (compare with Figure 3B). (C)Mean ERS in the behavioral datawas not significant by event relationship. Error bars represent
+ 1 SE of the mean. (D) Participants exhibiting greater disruption to temporal context during study also exhibit a greater reinstatement of dis-
ruption in temporal context during recall. � p= .06 (one-tailed). See the online article for the color version of this figure.
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neural similarity to be greater for item pairs studied with the same
task when compared to items with different tasks. We conducted
this analysis between item pairs studied in neighboring lists
(list-lag= 1) because control lists are only comprised of items of
the same task type or no task type. We thus excluded control lists
of items studied without a task. To avoid potential positional differ-
ences, we calculated neural similarity between items with a differ-
ence in serial position or lag= 1. In control lists, neural similarity
between items of the same task did not differ from neural similarity
of items studied with different tasks ( p. .3). Furthermore, the mean
magnitude of feature values did not differ between lists studied with
the size task versus the animacy task ( p. .5). Taken together, these
analyses suggest that the autocorrelated feature vectors reflect tem-
poral context information. To further discern the role of these posited
temporal context features in memory processes, we next examined
their properties during memory retrieval.

Reinstatement of Temporal Context in Control Lists

We next verified CMR’s core prediction that temporal context is
reinstated during recall. This prediction suggests that temporal infor-
mation is not just a by-product of study, but rather contributes to
memory representations and retrieval. To test this prediction, for
each recalled item we calculated the similarity between the temporal
context state of that item when it was originally studied to the current
temporal context state as the item was being recalled. In addition, we
calculated the similarity between the current temporal context and
the temporal contexts of the item’s neighbors from study (see
Figure 1E). According to CMR, because an item’s recall leads to
reinstatement of temporal context state from study, then the ERS
between the current context and an item’s context from study should
reflect the temporal history of studied items, such that items with
smaller absolute lags should have greater similarity (see Figure 2C).

Figure 5
Recall Transitions in Two-Task Lists

Note. (A) The context maintenance and retrieval (CMR) model predicts that transitions from a preboundary item
are more likely in the forward direction, which are more likely to be other items within the same event (darker teal
lines) than to items in the following event (lighter orange lines), in contrast to the established bias to make forward
transitions (see Figure 2B). (B) CMR predicts that transitions from a boundary item are more likely in the forward
direction, which are more likely to be items in the same event (darker teal lines) than in the backward direction,
which are more likely to be items from the preceding event (lighter orange lines), leading to an exaggerated tendency
to make forward transitions. (C, D) Consistent with CMR predictions, participants are more likely to recall items not
separated by an event boundary, and more likely to be within the same event (darker teal lines) than items separated
by an event boundary and from a different event (lighter orange lines). For more distant items with darker teal lines,
items may be from the following event. Cond. Resp. Prob.=Conditional response probability. Error bars represent
Loftus and Masson (1994) 95% confidence intervals. See the online article for the color version of this figure
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We assessed CMR’s prediction with the autocorrelated feature
vectors, our alleged neural measure of temporal context.
Specifically, for each recalled item, we calculated the ERS between
the recalled item’s feature vector to both the feature vectors from
study of itself (lag= 0) and to its neighbors of lag ∈� {− 5,− 4,
…, 4, 5}, for those items not yet recalled (see Figure 2D; also see
“Method” section). For negative lags (i.e., the similarity between
an item and the items studied before it), CMR predicts that ERS
should increase with study-recall lag. This is because a recalled
item’s retrieved temporal context should have greater overlap in tem-
poral context, that is, greater ERS, with other items studied nearby in
time to that item. This prediction is critical to distinguish the retrieval
of context information, as predicted in CMR, from the retrieval of
content, or item, information (Manning et al., 2011). To test this pre-
diction, we compared the ERS between at lag=−1 to the ERS at
more distant lags − 3 to − 5. Consistent with CMR’s prediction,
ERS was significantly greater at lag=−1 than the average
ERS at lags − 3 to − 5 (M = 0.009, SD = 0.039), t(169) = 2.95,
CI = [0.0029, 0.0146], p = .004, d = 0.083. We also evaluated
ERS at positive lags, predicting that ERS should decrease with lag
in the forward direction. Following the logic with negative lags,
CMR predicts that context states of items studied nearby in time
should share more temporal context, thus leading to greater ERS.
Paralleling the test of ERS with negative lag, we compared the
ERS at lag= +1 to the ERS at lags 3–5, and found that ERS
was greater at lag= +1 (M = 0.005, SD = 0.031), t(169) = 1.99,
CI = [0.0000, 0.0095], p = .048, d = 0.043. This result is not
only consistent with CMR’s prediction, but also helps to rule out
the possibility that our neural measure of temporal context at study
only reflects autocorrelated noise (Manning et al., 2011).
The slight negative asymmetry in the neural CRP shown in

Figure 2D appears at odds with the striking forward asymmetry in
behavioral CRP shown in Figure 2B. Furthermore, ERS at retrieval
does not peak for the lag= 0 matching item. Both of these results
should appear less surprising when considering that we designed
our neural features to separate representations of context from item
content. Thus, the neural CRP should not match the behavioral
lag-CRP, but rather should represent the underlying neural represen-
tation of context. CMR predicts that such a context representation
should decay symmetrically as the absolute value of lag increases
(Figure 2C). CMR predicts the forward asymmetry in the lag-CRP
because both temporal context and content information contribute
to the recall of an item (see Appendix A). Item information promotes
recall of items following the just-recalled item, and combines with
the symmetric support from context information to favor recall of
items from forward lags over backwards lags (cf. Howard &
Kahana, 2002; Manning et al., 2011).
Nonetheless, the apparent leftward shift of the neural CRP may

reflect a more nuanced understanding of the process of contextual
updating. This negative shift could arise because of the persistence
of item representations that penetrate the representation of neural
context. Although we attempted to rule this out by removing lag=
−1 items when participants recalled items in forward pairs, this
may not have completely eliminated contributions from the repre-
sentation of items in feature vectors, especially for items recalled
early in the list or within 1 s of each other (see “Method” section).
Alternatively, this may reflect our choice of presentation time win-
dow as in Manning et al. (2011). Importantly, this asymmetry
most likely does not reflect our selection criterion to have ERS at lag

=−1 exceed the mean ERS across lags − 3, − 4, − 5. Although
such a criterion could, at least in principle, bias us to find a time win-
dow with a larger lag=−1 value, all of the considered 36 time win-
dows had a value of lag=−1 numerically greater than lag= 1.
Future work remains to characterize the contributions of these fac-
tors and relate neural symmetry to behavioral asymmetry.
However, regardless of the asymmetry, this does not detract from
the critical result that temporal context is reinstated during free recall.

The Influence of Event Boundaries on Temporal Context
Representations

Having established neural and behavioral measures of temporal
context in control lists, we next turned to the critical analyses of
the influence of event boundaries on temporal context states. CMR
assumes that each item is associated with a temporal context and a
source context, yet these two contexts interact. Specifically, a change
in events (and thus a change in source context) leads to a disruption
in temporal context. As a result, CMR predicts that the similarity in
temporal context between neighboring studied items should be less
if those items are separated by an event boundary. Furthermore,
CMR predicts that the state of temporal context, incorporating the
disruption to temporal context during study, should be reinstated
during recall. We examined these predictions in two-task lists,
where participants performed one of two semantic encoding tasks
with each studied item, switching back and forth between the two
tasks throughout the list (see Figure 3A). In this way, an event is
operationalized as a sequence of items presented with the same
task, where task was indicated to the participant by the color, font,
and case of the word. We define an event boundary as a change in
encoding tasks. Thus, we term a boundary item as the first item pre-
sented with the changed encoding task, and a preboundary item as
the final item in an event before the task switch.

In the experimental data, we calculated temporal context for each
item in each two-task list using the feature vectors from the control
lists (see Figure 1). We excluded the two-task lists when calculating
the features vectors, so that the autocorrelation in our posited context
measure could not be driven by a change in encoding task. Because
each control list is comprised of only one encoding task type (no
task, animacy task, or size task), two items within the same control
list could not have reduced similarity with lag due to a task change,
because there were no task changes in these lists. Furthermore, our
strict criterion of autocorrelation across control lists of three task
types (see the Method section) would exclude feature vectors only
autocorrelated for lists of a single task type. Thus, feature vectors
reflect information slowly changing with each studied item irrespec-
tive of task type, a defining feature of temporal context but not
source context. As a result, a reduction in neural similarity between
feature vectors also reflects reduced temporal context similarity due
to the change in task, but not the perceptual features of the task
change. This approach shares similarities to the generalization crite-
rion method, where we “train” feature vectors on control lists, yet
“test” the validity of these features in two-task lists (Ahn et al.,
2008; Busemeyer &Wang, 2000). By only using control lists to cal-
culate the temporal context feature vectors, this makes it more likely
to extract feature vectors which are less sensitive to changes in fea-
tures specific to a single encoding task.

We first verified that the temporal context features, defined in con-
trol lists, still maintained the critical property of autocorrelation in
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the two-task lists. We calculated neural similarity during study
between items from the same event, and found that neural similarity
was significantly greater for item pairs with lag= 1 than lags 3–5
(M=0.070, SD=0.064), t(169)=14.41,CI = [0.0606, 0.0799],
p , .0001, d = 0.45 (Figure A1B). We also verified that these
changes were not driven by a single task type (Figure A1C).
Similarly to control lists, in two-task lists neural similarity was sig-
nificantly greater for item pairs with lag= 1 than lags 3–5 for
the size task (M=0.070, SD=0.095), t(169) = 9.7,CI = [0.0559,
0.0846], p , .00001, d = 0.43; and for the animacy task,
(M= 0.069, SD = 0.087), t(169) = 10.3, CI = [0.0555, 0.0817],
p , .00001, d = 0.42.
For CMR simulations, temporal context states are determined

with model equations (see Appendix A), and the similarity between
item pairs in a control list is identical to the similarity between item
pairs from the same event in a two-task list (Figure A1A). In contrast
to CMR predictions, neural similarity between item pairs is reduced
in two-task lists. Most likely, this reflects the exclusion of two-task
lists when first applying PCA to calculate temporal context vectors.
Participant data are more variable than model predictions, and the
exclusion of the variance provided by two-task lists could cause
overall reduced similarity between neighboring items. Because
these similarity values are only calculated for item pairs within the
same event, and thus with the same encoding task features, the
reduced similarity cannot be explained by fewer shared task features
across events.
To further ensure that the reduced neural similarity in two-task

lists does not reflect differences in task information, we compared
mean neural similarity values at study between item pairs in control
lists to similarity values of item pairs in two-task lists, again with
list-lag= 1 and lag= 1. In two-task lists, we excluded boundary
items to avoid concerns that these items may exhibit other control
processes independent of task information. Neural similarity values
did not differ for item pairs of the same task for one task versus two
task lists ( p. .5), nor for item pairs of different tasks ( p. .5). This
reinforces that task features do not influence differences of neural
similarity across list types. To confirm that task features do not influ-
ence differences in neural similarity across task types, we also com-
pared neural similarity for item pairs of the same type or different
task types, list-lag= 1 and lag= 1, paralleling the analysis in control
lists. For this comparison as well, now in two-task lists, neural sim-
ilarity did not differ between item pairs of the same task type versus
different task types ( p. .5). These analyses suggest that, despite the
reduced neural similarity in two-task lists, such a reduction is not
explained by assuming that feature vectors incorporate task informa-
tion. Having defined event structure and feature vectors of temporal
context in the two-task lists, changing slowly with each studied item,
we now assess CMR predictions in the experimental data.

Event Boundaries Modulate Temporal Context During
Study

CMR assumes that an event boundary leads to a disruption in tem-
poral context, making temporal context after the event boundary less
similar to the prior temporal context state. Thus, holding lag cons-
tant, the neural similarity in temporal context between two items
should be less when those items are separated by an event boundary.
CMR predicts that neural similarity should be less across boundaries
at any lag, yet because context similarity also decreases with lag, at

larger lags this difference becomes more subtle. Thus, CMR predicts
the most salient influence of event boundaries for neighboring pairs
of items, and here we examine this stricter test of CMR’s predictions
at study lag= 1. Figure 3B shows CMR’s prediction of the neural
similarity between pairs of successive items that border an event
boundary, as a function of being presented in the same event or dif-
ferent events. Although we show CMR’s prediction from a single set
of parameters (see Table A1), CMR always predicts greater similar-
ity between neighboring pairs in the same event than neighboring
pairs in different events, arising from the core model assumption
that a change in source context, or event boundary, leads to a disrup-
tion in temporal context (see Appendix A).

We tested CMR’s prediction by calculating the neural similarity
between temporal context feature vectors of successive items border-
ing an event boundary during study (see Figure 3C). We found that
neural similarity was greater between item pairs studied within the
same event than item pairs studied across different events,
(M=0.007, SD= 0.040), t(169) = 2.12,CI = [0.00050.0126],
p = .035, d = 0.041. This result is consistent with CMR’s underly-
ing assumption that there is a disruption to temporal context at the
event boundary, thus leading to reduced temporal similarity of
items separated by an event boundary. This also suggests that, for
items separated by an event boundary, their weakened neural simi-
larity may reflect their weakened temporal associations.

It is important to consider the alternate explanation that our pos-
ited temporal context vectors actually reflect task features that
change at the event boundary, including the encoding task and the
visual properties of the studied word. If this were the case, then a
reduction in neural similarity would reflect a reduction in task, not
temporal context, similarity. We took several steps to rule out this
alternate explanation. First, temporal context feature vectors are
only calculated from control lists, where each list only has a single
encoding task. Thus, if a feature vector is autocorrelated across
items within a list, it cannot be driven by changes to task features
alone. Also attesting to minimal contributions of task across task
types, the magnitudes of feature vectors did not differ between the
two types of control list types with a single task, and the control
list feature vectors inform those of the two-task lists.

Second, because we defined each feature vector by having a suf-
ficiently high item-to-item autocorrelation when summed across lists
(see the Method section), it is less likely that a feature vector’s auto-
correlation was driven by changes in a single task type. Instead, this
metric supported features which were autocorrelated across items
irrespective of within-list task type. Third, neural similarity between
feature vectors decreased as a function of study lag for item pairs in
two-task lists from the same event (and thus with the same task), as
well as item pairs in control lists for each task type (also always pre-
sented with the same task; see Figure A1). Finally, we ensured that
neural similarity differences between items of the same task type or
different task types were at equal levels between control lists and
two-task lists (see previous section).

Taken together, these results suggest the changes in neural simi-
larity across events reflect a disruption to temporal context.
Furthermore, these results suggest that the purported influence of
event structure on retrospective temporal judgments may reflect
changes to temporal representations during initial perceptual pro-
cessing. However, to fully appreciate the role of event structure on
temporal information on subsequent memory, we will also need to
examine these properties during memory retrieval.
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Reinstatement of Event Disruptions to Temporal Context

We next queried temporal context representations during recall,
motivated by CMR’s assumption that recall of an item evokes retrieval
of its context states from study. In the two-task lists, the retrieved con-
text includes the source (task) context, and the temporal context mod-
ulated by event boundaries. Thus, CMR predicts that if a preboundary
or boundary item is recalled, then the retrieved temporal context of the
recalled item should show greater similarity with its within-event
neighbor from study in comparison its across-event neighbor from
study (see Figure 4A and B). However, the predicted difference in
ERS is more subtle during recall than during study (i.e., compare to
Figure 3B). In retrieved context models such as CMR, the extent of
context reinstatement for each item is defined by a parameter ranging
from 0 to 1, with 0 indicating no context reinstatement and 1 indicating
perfect reinstatement. If context reinstatement was perfect, then the pre-
dictions of study and recall would be the same. To best account for
human behavior, the context reinstatement parameter is less than per-
fect (here, set to .510; see Table A1). As a result, the difference for
within-event similarity versus across-event similarity during recall is
less than (a perfect reflection of) the difference in context from study.
We next assessed CMR’s prediction in participant EEG data for

recall of boundary items and preboundary items (see Figure 4C).
ERS was not significantly different for a recalled item if the similar-
ity was calculated with its studied neighbor from the same versus a
different event (M = −0.004, SD = 0.070), t(169) = −0.78,
CI = [−0.0147, 0.0064], p = .439. Yet this is not entirely incon-
sistent with CMR’s prediction that the difference in similarity rein-
stated during recall is less than the ERS difference at study. To
further probe whether this nonsignificant difference in ERS might
reflect a meaningful signal in temporal context, we examined the
across-participant variability in temporal context reinstatement. In
particular, we hypothesized that those participants exhibiting greater
disruptions to temporal context during study should also exhibit
greater reinstatement of those disruptions during recall, even if the
mean difference in temporal context was not significant. To test
this hypothesis, we calculated each participant’s difference in neural
similarity at study (within vs. across event in Figure 3C), and corre-
lated this with each participant’s ERS difference at recall (see
Figure 4C). We used robust regression, a regression method
designed to be less sensitive to potential outliers by assigning a
weight to each data point, and inherently downweighing potential
outliers. We found that these two difference measures trended
towards a positive correlation (N= 170, b= 0.20, one-tailed
p = .063; Figure 4D). This suggests that, if a participant experiences
the task changes as more salient disruptions to temporal information
associated with items, then that participant also reinstates such tem-
poral disruptions when recalling those items. Thus, this result is con-
sistent with our hypothesis that the disruptions to temporal context
by event boundaries from study were reinstated during recall.
More broadly, this suggests that the influence of event segmentation
on retrospective temporal judgments reflects reinstatement of tempo-
ral context encoded from study.

Event Disruptions to Temporal Context From Study
Influence Recall Behavior

We next examined a novel prediction of CMR concerning the
impact of event boundaries on free recall behavior, in particular

recall transitions. This prediction builds on previous findings estab-
lishing that much of the variability of recall transitions in free recall
can be explained by the temporal relationships between studied
items, as participants are more likely to transition between items pre-
sented nearby on the study list (Figure 2B; Healey et al., 2019;
Kahana, 1996, 2012). CMR assumes that temporal context drives
this temporal organization (see Figure 2A), and so CMR also
assumes that recall transitions should be modulated by temporal dis-
ruptions imposed by event boundaries. As shown in Figure 5A,
CMR predicts that recall transitions from a preboundary item should
be less likely to the item at lag= +1 in the two-task lists, as com-
pared to transitions of lag= +1 in the control lists (see Figure 2A).
This striking prediction stands in contrast to the forward asymmetry
usually seen in free recall (Healey et al., 2019; Kahana, 1996, 2012).
Yet, according to CMR, an event boundary disrupts temporal con-
text between the preboundary item and the next item (at lag= +1),
and so these items do not overlap as much in their temporal context
states. As a result, when the preboundary item is recalled and its tem-
poral context is reinstated, the retrieval cue incorporating this context
will overlap less with the context of the lag= +1 item. Thus, this
state of context does not promote recall of the lag= +1 item as
strongly as in a control list. Furthermore, more temporal context is
shared between the lag=−1 item and the preboundary item,
because these items are from the same event. Thus, CMR predicts
that transitions from a preboundary item to the item studied before
it, the lag=−1 item, is more likely when compared to control
lists or even to the lag= +1 item.

In a complementary way, CMR predicts that recall transitions
from boundary items are modulated as well (see Figure 5B). A tran-
sition from a boundary item to its neighbor at lag= +1 should be
more likely than in control lists, because these items share both
event information and temporal information. Following similar
logic, CMR also predicts that a transition from a boundary item
should be less likely to the item at lag=−1, because such items
were presented in a different event and thus share less temporal con-
text with the just-recalled boundary item.

Next, we examined whether CMR’s predictions were upheld in
participants’ data. To assess these effects statistically, we defined
the temporal modulation score as the difference in lag-CRP values
at |lag|= 1 for transitions made within event minus transitions
made across event. (Thus, for preboundary items this score is defined
as CRP values at lag=−1 minus those at lag= +1; for boundary
item this score is defined as CRP values at lag= +1 minus those
at lag=−1). As a baseline, we compared this value to the
lag-CRP values at the same lags from the control lists. We found
that the distribution of temporal modulation scores from preboun-
dary items was significantly greater in two-task lists than matched
lags in control lists (M = 0.190, SD = 0.154), t(169) = 16.09,
CI = [0.1670, 0.2137], p , .0001, d = 1.41. Qualitatively, the
lag-CRP in the experimental data (see Figure 5C) exhibits a similar
pattern to CMR’s prediction, with larger values for transition
probabilities for negative lags over positive lags. In addition,
the temporal modulation scores from boundary items were also sig-
nificantly greater in two-task lists than matched lags in control
lists (see Figure 5D; M = 0.139, SD = 0.166), t(169) = 10.97,
CI = [0.1144, 0.1646], p , .0001, d = 0.98. Thus, the recall
transitions in two-task lists of the participants’ data are consistent
with CMR’s assumption. During study, event boundaries disrupted
temporal representations, and at recall these temporal
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representations, incorporating the disruption, are reinstated. As a
result, this promoted transitions between items with more similar
temporal context states, typically within the same event.

Relating Neural Temporal Context to Recall Behavior

Having established measures suggestive of the impact of event
boundaries on temporal context—neurally and behaviorally—we
next assessed whether there was a causal role of the reinstated
temporal disruptions, reflecting event structure from study. In
particular, we asked whether the neural measures predicted the
behavioral measures. According to CMR, both the neural modu-
lation and the behavioral modulation should be greater when
there is a greater disruption to temporal context by event informa-
tion. Although CMR predicts average data, the extent of disrup-
tion may vary by participant. If this were the case, then those
participants exhibiting a greater modulation by event boundary
in their ERS difference should exhibit a greater modulation by
event boundaries in their recall transitions. In other words, if
each participant’s neural measures (see Figure 4) and behavioral
measures (see Figure 5) both reflected modulations of temporal
context by event boundaries, and if such information influenced
memory, then the neural and behavioral measures should be cor-
related across participants.
We defined a participant’s neural modulation by temporal context

as the difference in ERS for within-event transitions versus
across-event transitions (i.e., the difference in the two bars plotted
in Figure 4). We defined a participant’s behavioral modulation by
temporal context by summing the temporal modulation scores of pre-
boundary and boundary items. Here we leveraged the variability
across participants in the extent to which event boundaries modulate
their temporal context states, and we predicted a positive correlation
between neural modulation and temporal modulation. Again using
robust regression to account for potential outliers, we found that across
participants these two measures were weakly correlated (see Figure 6,
N= 170, b= .41, one-tailed p= .045). This suggests that variance in
the temporal modulation scores can be explained by the neural tempo-
ral contextmeasure. Although there is variability across participants in
the extent to which event boundaries modulate their behavioral and
neural activity, the correlation across participants suggests that a dis-
ruption to temporal context may underlie both effects.
This correlation also argues against the possibility that the signifi-

cant differences in the temporal modulation scores simply reflect
recall organization based on shared event information and shared
encoding task, rather than shared temporal context. If temporal con-
text did not contribute to recall transitions, then we would not expect
recall behavior to correlate with the neural measure of temporal con-
text. As further attestation to this point, if the behavioral modulation
was driven by shared source or task context, then we would expect
the ERS difference to correlate with the degree to which participants
transition to items of the same task, irrespective of temporal lag. We
calculated this task, or source, clustering score for transitions made
from boundary or preboundary items. Across participants, source
clustering scores were not correlated with the neural modulation
scores (N = 170, b = 0.003, p . .4), further suggesting that
shared task features alone were not driving neural activity. Rather,
these correlations are most consistent with CMR’s critical assump-
tion that a change in source context, or event boundary, disrupts tem-
poral context.

As another approach to assess the importance of temporal context
for memory organization, we examined predictions of a model var-
iant which makes the same assumptions as CMR except that event
boundaries do not evoke disruptions in temporal context (best-fit
parameters of the pure association model from Polyn et al., 2009a,
Figure A3). This model variant was unable to capture the critical
findings in behavioral and neural data. Taken together, the results
reveal the influence of event structure on temporal context during
initial perception, and on memory representations to influence
retrieval and recall dynamics.

Discussion

How differences emerge between the objective environment and
internal experience remains a broad yet fundamental question in cog-
nitive psychology. Such differences can impact perception of infor-
mation in the moment, as well as how the information becomes
represented in memory. Appreciating the interactions between ongo-
ing perception and subsequent memory provides insight into both
processes (e.g., Clewett et al., 2019; Zacks et al., 2007). Here we
examined the interaction between event segmentation and episodic
memory through the lens of temporal context: how online event seg-
mentation influences temporal context, and the consequence of con-
text changes to mnemonic representations. We examined these
effects in memory behavior and in neural activity by recording
EEG as participants studied and recalled lists of words. To discern
the unique contribution of temporal information to event segmenta-
tion and memory organization, we compared these results to neural
and behavioral predictions of a computational cognitive model.
Consistent with model predictions, these results reveal that temporal
information plays a primary role in event segmentation and memory:
event boundaries disrupt temporal context, impacting memory
retrieval even when temporal information is not queried directly.

Our measure of perception with temporal information differs from
most other studies relating event segmentation and temporal repre-
sentations, which ask participants explicitly to make temporal judg-
ments (Ezzyat & Davachi, 2014; Faber & Gennari, 2017; Lositsky et
al., 2016). Instead, we measured a neural correlate of temporal con-
text with EEG. This enabled us to assess temporal perception both
prospectively during initial perception and encoding, as well as ret-
rospectively during memory retrieval. Furthermore, by not asking
participants directly about time, this neural measure allowed us to
query how temporal information influences memory dynamics
even when such information is not as critical to task performance.
The calculation of this temporal measure was motivated by retrieved
context models such as CMR. These models assume that context
changes slowly with each studied item, and that an item’s context
state is retrieved when the item is recalled (Figure 1; Howard &
Kahana, 2002; Manning et al., 2011). We first established this mea-
sure of temporal context in control lists, which only had one task
type per list and thus presumably did not impose a strong event struc-
ture during study. We demonstrated for the first time a neural corre-
late of temporal context in scalp EEG (see Figure 2).

Here we operationalized event boundaries with controlled
changes to presented information to help minimize the impact of
these changes on memory performance between events: a change
in the encoding task performed with each presented item, where
the task was indicated by the color, font and case of the item.
Event boundaries are often operationalized by more salient changes,
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such as a change in the semantic category of presented information
(e.g., DuBrow & Davachi, 2013, 2014; Ezzyat & Davachi, 2014), or
features of the presented information such as size or location (e.g.,

Faber & Gennari, 2015, 2017; Heusser et al., 2016, 2018;
Lositsky et al., 2016; Radvansky & Copeland, 2006). By contrast,
we minimized stimulus changes between events to better isolate

Figure 6
Influence of Event Boundaries on Neural and Behavioral Measures of Temporal Context

Note. In this correlation plot, each dot corresponds to a participant. The x-axis reflects the neural measure of event boundary modulation on
temporal context; the y-axis reflects a behavioral measure of event boundary modulation on temporal context (see text for details). The top
and bottom panels show for two participants the encoding-retrieval similarity (ERS) at recall, used for calculating the x-axis, and conditional
response probability (Cond. Resp. Prob.) as a function of lag, used for calculating the y-axis. Top panel: This participant has a high ERS difference
at recall and a high temporal modulation score. Bottom panel: This participant has a low ERS difference at recall and a low temporal modulation
score, as recall transitions are similar irrespective of whether the transition is from a preboundary item (bottom middle panel) or a boundary item
(bottom right panel). *p, .05 (one-tailed). See the online article for the color version of this figure.
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the contribution of temporal information to event structure andmem-
ory. Nonetheless, our operationalization of event boundary—some-
what unpredictable and reflected as a change in encoding task and
change in visual stimulus features such as color—is consistent
with previous studies which use these features to impose event struc-
ture (e.g., DuBrow & Davachi, 2013, 2014; Frank et al., 2020;
Heusser et al., 2018; Radvansky & Zacks, 2017; Zacks et al.,
2011, 2007).
With our conservative definition of event boundaries, we first ver-

ified that EEG activity can provide a neural measure of temporal con-
text by extracting EEG activity from electrodes across mnemonic
regions (Long et al., 2014; Long & Kahana, 2017; Weidemann et
al., 2009). We next verified several CMR predictions regarding the
influence of event boundaries on temporal information. CMR repre-
sents event, task and temporal information as context states, and
makes testable predictions regarding the interactions between tem-
poral context and event structure. Rather than fit parameters to sim-
ulate the current study, we set a stricter threshold of CMR
predictions: we simulated data from a pre-existing set of parameters
and data, and then assessed CMR predictions in the current study. As
a first step to test CMR predictions, we found that neighboring items
at study have reduced neural similarity in temporal context when
separated by an event boundary (see Figure 3).
Critically, we examined how disruption to temporal context dur-

ing study subsequently influenced neural and behavioral activity
during memory retrieval. While freely recalling list items, partici-
pants exhibited neural activity consistent with reinstatement of tem-
poral context from study. In control lists, the neural temporal context
of a recalled item was most similar to the temporal context of its
neighbors from study (see Figure 2D), consistent with predictions
of the retrieved context model framework (see Figure 2C). In addi-
tion, in the lists with two tasks and event structure, we found evi-
dence that participants reinstated temporal context states from
study, including temporal context disruptions between events.
Specifically, participants exhibiting a larger decrease in temporal
context similarity across events during study trended towards exhib-
iting a greater decrease in this measure during recall (see Figure 4D).
This provides support for temporal context reinstatement during
recall, as those participants more influenced by the disruption of
temporal information during study also reinstates such information
during memory retrieval. Although previous studies have demon-
strated neural evidence of event-related reinstatement during mem-
ory retrieval (Baldassano et al., 2017; Chen et al., 2017; DuBrow
&Davachi, 2014; Zadbood et al., 2017), here we show that temporal
information related to the event is reinstated as well. Importantly, the
free recall test does not explicitly ask participants to remember this
temporal information or the event structure. Thus, our results suggest
that recall of an item automatically evokes retrieval of temporal con-
text states from study, consistent with CMR’s assumption.
Patterns of recall behavior, and their relation to neural activity,

also attested to the influence of these neural temporal context states
on memory organization. Although in a free recall task, participants
may recall items in any order, recall order in two-task lists reflected
the influence of event segmentation. Specifically, recall transitions
were less likely between items studied in different events than
items studied in the same event (see Figure 5C andD). CMR predicts
this effect with the presented parameter set (see Figure 5A and B),
and would also predict this effect with most parameter sets, due to
its core assumption that an event boundary disrupts temporal context

and thus weakens memory associations. This pattern of behavior was
most striking for successive recalls between neighboring items (i.e.,
lag=+1). Because event boundaries disrupt associative transi-
tions, these results are consistent with findings that items across
events have weaker memory associations (Baldassano et al., 2017;
DuBrow & Davachi, 2013, 2014; Swallow et al., 2009, 2011).
Furthermore, because transitions between temporal neighbors are
impacted, and these relate to the neural measure of temporal context,
we also interpret our results as consistent with longer temporal dura-
tion judgments across event boundaries (Clewett et al., 2020;
DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014; Faber &
Gennari, 2017; Lositsky et al., 2016).

We found evidence of these relationships in mean participant data,
as well as in across-participant variability. From the viewpoint of
CMR, a participant exhibiting a greater difference in neural similar-
ity during study experienced larger disruptions to temporal context,
which should manifest during the recall test in both neural activity
and memory performance. Future work remains to characterize
how and why such changes vary by participant and by individual
event, as well as whether more subtle changes to context might be
better inferred as a shift in, rather than a disruption to, context
(DuBrow et al., 2017). Nonetheless, to the best of our knowledge,
this is one of the first studies to link directly, through neural activity
and behavior, how event structure can influence temporal represen-
tations to impact memory performance. Critically, these results sug-
gest that the influence of event boundaries on memory associations
and temporal judgments reflect the direct impact of temporal context,
even though event boundaries are defined by nontemporal features.
Furthermore, whereas retrospective temporal judgments have been
posited to reflect properties of memory distinct from those operating
during online perceptual processing (Grondin, 2010; Pöppel, 1997),
our results suggest that the foundation is laid for this critical temporal
information during initial perception and encoding.

We assessed the success of CMR’s predictions based on qualita-
tive patterns in mean data, as well as expected correlations across
participants. It is not surprising that the neural measure of temporal
context, extracted from brain activity across regions and timepoints,
is more variable than the mean activity predicted by CMR.
Variability in neural activity would produce weaker neural similarity
and ERS values when compared to model predictions. Furthermore,
because neural analyses of two-task lists used feature vectors calcu-
lated from control lists only, any variability in neural activity across
lists would lead to weaker neural similarity in two-task lists. By con-
trast, CMR does not assume any variability across lists. Furthermore,
we assert that such noise may also account for the variability in the
neural similarity difference (at study) or ERS difference (at recall) in
two-task lists between neighboring items from the same or different
events. Although a surprisingly high number of participants do not
exhibit a negative difference as predicted by CMR, this could
again be due to a noisier measure in participant data when compared
to model predictions. Alternatively, greater similarity across bound-
aries may reflect rapid reinstatement of the prior event at the event
boundary (Ben-Yakov et al., 2014; Sols et al., 2017). Yet if the
rapid reinstatement were the primary cognitive mechanism, we
would not expect disruptions in neural similarity during study, nor
decreased transitions across event boundaries during retrieval.
Thus, although there could be tension at boundaries between tempo-
ral disruption after the prior event versus reinstatement of the prior
event, we would argue that disruption accounts for a greater amount
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of variance in the current data, consistent with prior studies examin-
ing the influence of event segmentation on temporal perception (e.g.,
DuBrow & Davachi, 2013, 2014; Ezzyat & Davachi, 2014; Faber &
Gennari, 2017; Lositsky et al., 2016). With respect to model devel-
opment, future work could incorporate other posited mechanisms of
event segmentation and other cognitive processes which may con-
tribute to the variability in the neural representations. With respect
to EEG, future work should extend and replicate these results
while incorporating other contributions from purely electrophysio-
logical signals unrelated to mnemonic activity measures. Here we
sought to find meaning in the qualitative pattern of results purely
due to temporal representations.
We took several steps to ensure that we were assessing a measure

of temporal context and how it was impacted by source context and
event segmentation, rather than simply measuring source context
itself. That is, we would expect a neural measure of source con-
text—like a neural measure of temporal context—to exhibit
lower neural similarity between item pairs separated by an event
boundary, and so it is important to consider the possibility that a
change in temporal context truly reflects temporal information.
Our approach to measuring temporal context was motivated by
CMR, which assumes each item is associated with a temporal con-
text and a source context. Source context is defined by the encoding
task of the current item and a change in source (task) context nec-
essarily causes a disruption to temporal context. A CMR model
variant, the “pure association model variant,” which assumes that
a change in source context does not cause a disruption to temporal
context fails to predict recall behavior correctly, as it overpredicts
recall transitions between same-source items (Polyn et al.,
2009a). Thus, on a theoretical level, CMR motivated the expected
results because it did not consider temporal context alone, but
rather interactions between temporal context and source context.
We also verified in the present study that the “full” CMR model
provides a better fit to the current set of findings than the pure asso-
ciation model variant.
Experimentally, we calculated slowly changing feature vectors of

temporal context in control lists which do not have task changes.
Thus, if a feature vector changes slowly in a list without task
changes, it is unlikely that this feature vector primarily incorporates
source features. It is also not a concern that an individual feature vec-
tor only reflects a single task type, both because we defined feature
vectors with strong autocorrelation across all control lists with three
possible task types, and because these feature vectors were calcu-
lated from electrodes previously implicated in memory behavior
even when collapsing across the two single-task list types (Long et
al., 2014). In addition, when examining the impact of event bound-
aries on feature vectors during recall, we found this measure to relate
to temporal, but not task, recall organization. Taken together, we
interpret our neural measure of temporal context to reflect the impact
of, but not the representations of, source context.
We also assert that the current results cannot be explained by

positional information. According to retrieved context models
such as CMR, temporal context changes slowly with each studied
item. However, this also means that temporal context shares prop-
erties with some positional accounts of recall, whereby each item is
associated with a positional code in the list. If the positional codes
change slowly with each studied item, then neural feature vectors
may reflect positional information, not purely temporal informa-
tion. Yet neural similarity of feature vectors decreased across

lists, suggesting that the neural representations changed slowly
over time, not just as a function of within-list position. Although
it is possible that within-list positional code information is
extracted from temporal context representations (Logan & Cox,
2021), our results rule out the possibility that feature vectors are
purely positional codes maintained across lists. Thus, these results
may generalize to studies of event segmentation beyond shorter
lists of discrete items, where discrete positional codes may play
less of a role (e.g., Baldassano et al., 2017; Ezzyat & Davachi,
2014; Zacks et al., 2001).

We also examined contributions of positional information by con-
sidering variability across serial positions in the primary analyses.
Recall probability is greater in some serial positions than others
(Figure A2), and thus items in these positions may contribute
more to ERS analyses. We conducted several analyses to ensure
that our results did not reflect properties unique to items from
these serial positions (see Appendix B). Furthermore, CMR also
incorporates variability in recall across serial positions. When recall
begins, the current context cues recall, and context is a recency-
weighted sum of studied items. Thus, this context state promotes
recall of recently presented items, leading CMR to predict greater
recall of recency items. In addition, CMR assumes that
context-to-item associations are greater for early list positions.
Given an early list and a mid-list item with the same strength in con-
text, it is more likely that context will cue, and that CMR will recall,
an early-list item with greater context-item weight (see
Appendix A).

Several possible mechanisms may induce the increase weighting
of the context-to-item associations in CMR, and an investigation of
these mechanisms has been actively investigated for decades.
Primacy items may benefit from greater attention or novelty
(Davelaar et al., 2005; Farrell, 2012; Lewandowsky & Farrell,
2008). As another explanation, primacy items may also benefit
from greater activation energy, or less fatigue, at the beginning of
the list (Brown et al., 2000; Lohnas et al., 2020; Page & Norris,
1998; Tulving & Rosenbaum, 2006). If participants are silently
rehearsing items during study, then primacy items benefit from
more rehearsals (Rundus, 1971; Tan&Ward, 2000). In addition, pri-
macy itemsmay benefit from having less interference, as fewer items
precede their study (Brown et al., 2007; Murdock, 1960; Neath,
1993).

Although CMR’s primacy mechanism does not distinguish
between these possibilities, its primacy mechanism does have a
strong implication for context states. Critically, context representa-
tions are not influenced by the primacy mechanism, only the
context-to-item associations are. However, neural activity can differ
between items studied earlier and later in the list (Reddy et al., 2021;
Rushby et al., 2002; Sederberg et al., 2006; Serruya et al., 2014;
Umbach et al., 2020; Wiswede et al., 2007), which may raise con-
cerns that feature vectors—the posited measure of temporal con-
text—may incorporate neural activity from primacy items. Yet
several follow-up analyses which incorporate serial position infor-
mation suggest that our results are not driven by activity unique to
early-list items (see Appendix B). Taken together, these results sup-
port our claim that feature vectors are consistent with assumptions of
temporal context in retrieved context models, at the exclusion of
source or positional information.

Our neural definition of temporal context was motivated by prior
work incorporating assumptions from retrieved context models such
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as CMR (Folkerts et al., 2018; Howard et al., 2012; Manning et al.,
2011). However, other definitions of temporal context have been
queried with neural data. Notably, Kragel et al. (2021) queried
brain regions which represent temporal context by exhibiting dis-
criminable activity between the serial positions of items within a
list, between lists within a session, and across sessions. In the current
study, we were interested in a temporal context measure which
changed slowly with each studied item, in order to address whether
these representations would change more across events than within
events. If we employed the temporal context measure defined by
Kragel et al. (2021), this measure might confound the start of an
event with the start of a list, and might not preserve pairwise similar-
ities between items over time. Futurework remains to determine how
these brain regions provide complementary or shared information to
inform representations of temporal context in event structure and
episodic memory.
At the same time, our results are broadly consistent with estab-

lished properties and neural regions implicated in temporal context.
Although EEG recordings generally have poor spatial resolution, our
results add confidence that a neural measure of temporal context can
be measured at the scalp. Here we recorded activity from electrodes
over mnemonic brain regions in the temporal lobe and frontal lobe
(Long et al., 2014; Long & Kahana, 2017; Weidemann et al.,
2009). Previously, studies recording intracranial EEG have reported
activity consistent with temporal context from regions in the tempo-
ral lobe (Folkerts et al., 2018; Howard et al., 2012; Long et al., 2014,
2017; Manning et al., 2011; Manns et al., 2007; Yaffe et al., 2014).
Studies using functional magnetic resonance imaging have also
found regions of the temporal lobe exhibit properties consistent
with temporal context (Hsieh et al., 2014; Jenkins & Ranganath,
2010; Kimura et al., 2010; Konishi et al., 2002; Kragel et al.,
2015; Nielson et al., 2015; Turk-Browne et al., 2012). In addition,
regions of the frontal lobe have also shown activity consistent with
temporal context representations (Cabeza et al., 1997; Eyler
Zorilla et al., 1996; Jenkins & Ranganath, 2010; Konishi et al.,
2002).
Although overlap between intracranial and scalp recordings of the

temporal lobe might be more intuitive, scalp recordings from in the
included frontal lobe regions has been posited to relate to intracranial
medial temporal lobe activity (Long et al., 2014). If electrodes from
either the frontal lobe or the temporal lobe might reflect medial tem-
poral lobe activity, it is worth noting that the medial temporal lobe,
and the hippocampus in particular, is critical for episodic memory
(Aggleton & Brown, 1999; Davachi, 2006; Eichenbaum, 2004;
Fernandez et al., 1999; Goyal et al., 2018; Sugar & Moser, 2019)
and for temporal representations (Eichenbaum, 2014; MacDonald
et al., 2011; Tsao et al., 2018; Umbach et al., 2020). Because tem-
poral context is defined by incorporating features of previously stud-
ied information, our neural measure of temporal context also is
consistent with prior studies implicating the medial temporal lobe,
and the hippocampus in particular, in binding of episodic features
within and across events (Davachi, 2004; Heusser et al., 2016;
Pacheco Estefan et al., 2019; Richmond & Zacks, 2017; Staresina
& Davachi, 2006, 2009). Through these mnemonic representations,
the medial temporal lobe has also been shown to represent
event-related information, including an influence on memory perfor-
mance (Baldassano et al., 2017; DuBrow & Davachi, 2014; Ezzyat
& Davachi, 2014; Lositsky et al., 2016). In addition, regions of the
frontal lobe—including lateral regions more easily measurable from

the scalp—are also critical for episodic memory (Blumenfeld et al.,
2011; Hanslmayr & Staudigl, 2014; Long et al., 2014; McAndrews
&Milner, 1991; Paller &Wagner, 2002) including free recall (Long
et al., 2010; Sederberg et al., 2007; Staresina & Davachi, 2006), and
support event segmentation (Baldassano et al., 2017; Chen et al.,
2017; DuBrow & Davachi, 2016; Ezzyat & Davachi, 2014; Kurby
& Zacks, 2008; Sols et al., 2017; Zacks et al., 2001). Thus, our
results are broadly consistent with prior studies examining the neural
correlates of temporal context, episodic memory and event segmen-
tation. Further linking how these regions are important for these
three seemingly disparate cognitive functions, our results suggest
that temporal context plays a critical role in episodic memory, and
that event segmentation influences memory representations to incor-
porate temporal context.

We presented CMR simulations to provide an intuition for the
impact of temporal context on event structure and memory. We do
not wish to suggest that CMR is the only model which can predict
our results, but the current results point to challenges or areas of fur-
ther development for other models. For instance, CMR’s predictions
are consistent with other current cognitive model frameworks which
segment sequences of items and make predictions of memory.
Whereas other models can infer event structure based on stimulus
features and predictability (e.g., Radvansky, 2012; Zacks et al.,
2007), CMR needs to be provided the event structure explicitly to
update source context and temporal context. Despite the different
objectives of these types of models, CMR assumes event boundaries
cause a disruption to memory associations, similar to established
accounts of event processing such as Event Segmentation Theory
and the Event Horizon Model (Kurby & Zacks, 2008; Radvansky,
2012; Radvansky& Zacks, 2017; Zacks et al., 2001). Thus, our find-
ings may be explained by the Event Horizon Model framework,
which embodies Event Segmentation Theory. According to this
framework, a current event model is held in working memory, and
each event boundary updates the model. As a result, it is more diffi-
cult to retrieve information outside of the current event or the cur-
rently retrieved event (Radvansky & Zacks, 2017; Swallow et al.,
2011). Thus, the Event Horizon Model should predict the decrease
in recall transitions between neighboring items from different
events. However, development of the Event Horizon Model has
focused primarily on information repeated across events, whereas
in the current study each event was comprised of unique novel
items. Currently this model does not make quantitative predictions
and is more agnostic with respect to the role of temporal representa-
tions, so it remains to be fully developed to make predictions of
memory and temporal information.

In a complementary way, existing models of episodic memory
may be amenable to incorporating event segmentation findings.
For instance, the model of Farrell (2012) accounts for major findings
in free recall by assuming that participants naturally segment list
items into groups, where items within a group share a common
group context. If the Farrell model assumes that successive items
with the same task are represented in a group, then it would predict
that recall transitions are more likely between items within the same
event. However, the Farrell model assumes that the items within a
group are recalled in order, and thus the model may have difficulty
predicting the increase in lag=−1 transitions for preboundary
items (Figure 5C). Another intriguing contrast between CMR and
the Farrell model concerns control lists. Unlike CMR, which treats
a control list as a single long event, the Farrell model would assume
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that the list is subdivided into chunks of variable length (see also
Romani et al., 2016). If event segmentation took place even in con-
trol lists, this should lead to a greater drift in the feature vectors for
some items more so than others. By contrast, as a simplifying
assumption CMR usually assumes that context changes at a constant
rate for each item. We kept context drift rates constant to be consis-
tent with prior work of successful predictions using the retrieved
context framework. The success of CMR in the current simulations
suggests that varying this parameter was not necessary to account for
the qualitative pattern of the results, and varying the drift rate leads to
interactions with other behavioral effects of less interest here (Polyn
et al., 2012). Future work will need to distinguish whether the vari-
ance in temporal autocorrelation across items in control lists reflects
inevitable noise in neural data, or relates meaningfully to an individ-
ual’s endogenous segmentation.
Recently, Frank et al. (2020) presented Structured Event

Memory (SEM), a computational model of event cognition. Like
CMR, SEM can incorporate event structure during study to predict
memory performance. Unlike CMR, SEM can infer event structure
across a range of naturalistic stimuli, and can predict memory per-
formance based on the inferred structure. Although CMR needs to
be provided the event structure explicitly, in a list-learning para-
digm like the current study, SEM assumes that event structure is
inferred correctly based on encoding tasks. Yet even if both models
were provided with the event structure of the current study, SEM
does not include explicit representations of temporal information
nor has it been applied to free recall data. However, it would be
an intriguing direction to examine how SEM might account for
the effects presented here, in the absence of temporal information.
In a complementary way, CMR may be a suitable framework to
extend by incorporating more complex stimulus features and
event structures. Such an extension would build upon CMR simu-
lations accounting for the neural correlates of task representations
(Morton et al., 2013) and temporal representations (Kragel et al.,
2015; Manning et al., 2011). Nonetheless, the current study,
which kept changes between events as minimal as possible,
allowed us to disentangle the role of temporal information in epi-
sodic memory and event structure. Thus, we have begun this pro-
cess by presenting CMR predictions which integrate these two
types of representations on a neural level and on a behavioral
level. Such predictions capture how temporal representations,
shaped by event segmentation, are formed during encoding to
influence memory retrieval and recall performance, even though
neither event nor temporal information are tested directly.

Conclusions

An underlying objective of cognitive neuroscience and psychol-
ogy is to characterize the transformation of external environment
into internal experience. This transformation begins during initial
perception, and then influences how information is encoded into
memory. Context is posited to be important for both perception
and memory, and here we link the critical role of temporal context
to both perceptual processes and episodic memory representations.
Previous studies have suggested that event segmentation influences
temporal perception and memory, but the role of temporal context
in these processes remained unclear. In particular, it was less clear
how and when temporal context influenced memory representa-
tions, as well as whether this was an automatic process, or only

manifested when tested explicitly. Here we characterized the influ-
ence of event structure on temporal representations while partici-
pants studied and recalled words. This task imposed event
structure without requiring explicit retrieval of temporal or event
information.

Temporal perception and episodic memory share a complex rela-
tionship that is not fully understood. Our approach of simultaneously
considering behavior and neural activity through the lens of a com-
putational model provides novel insight into their interactions.
Leveraging these methodological tools, we showed that event seg-
mentation, even when defined with nontemporal features, impacts
temporal representations during initial perception and memory
encoding. In turn, temporal representations influenced brain activity
and behavior during memory retrieval. These results suggest that
temporal context plays a primary, not secondary, role in incorporat-
ing event structure into episodic memory. Our results underscore the
impact of event segmentation on temporal representations, and the
role of temporal context in linking initial perceptual processes
with memory representations.
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Appendix A

Model Simulations

Context Maintenance and Retrieval (CMR) Model

Here we provide an overview of the CMRmodel, highlighting the
components most relevant to interactions between temporal context
and event segmentation. CMR stores representations of item fea-
tures, their corresponding contexts, and the associations between
items and context. When an item in serial position i is studied, this
activates the item’s associated feature representation, fi. CMR
assumes a localist representation, such that item i is represented by
a vector with 1 for those features corresponding to the item’s serial
position and associated encoding task, and 0’s everywhere else. This
feature representation is used to generate an input to update context,
cINi , using an association matrix that links item features (F ) to con-
text states (C ), MFC, with the simple product cINi = MFCf i. This
input to context is then used to update context:

ci = rici−1 + bcINi (A1)

where β is a model parameter, and ρ is set so that |c|= 1 (a mathe-
matical convenience). Larger values of βmean that the input to con-
text will update context to a greater amount. When β is larger, ρ is
smaller; as a result, the prior context is downweighed more. Note
that in these equations, the index of each context and item feature
is from the item i. Context is updated with each studied item, and
thus changes slowly over time.
Critical to CMR’s ability to capture event segmentation, an event

boundary updates temporal context beyond the updating from the
studied item alone. Whenever there is a change in the task associated
with an item, this causes CMR to present an additional ‘‘item” to the
model and update temporal context. However, these boundary items
are not stored in memory and cannot be retrieved during the recall

period. Nonetheless, they function to update context in a similar
way to studied items, in that they update context according to
Equation 1. Whereas temporal context for a studied item is updated
by setting b = btemp

enc , temporal context for an event boundary item is
updated with value d. This additional item thus disrupts the temporal
context state, causing temporal context to drift even further from the
current temporal context state. As a result, the temporal context
between two items should be less similar when they are separated
by an event boundary (see Figure 3B). However, in two-task lists,
item pairs in the same event should have approximately the same
levels of similarity and decrease with lag, as if they were presented
in a control list; both types of items are presented with the same task
and not separated by an event boundary (Figure A1A). This latter
prediction is upheld in the experimental data, as neural similarity
decreases by lag for both types of item pairs (Figure A1B).

An update to context also updates the association matrices
between items and contexts (MFC, MCF) as the Hebbian outer prod-
uct (e.g., DMFC = cif`i ). CMR incorporates a primacy gradient for
the weight given to the updated context states inMCF, such that con-
text is updated more strongly from early list items:

DMCF
exp / (fse

−fd (i−1) + 1)f ic`i . (A2)

In this way, the ws gives extra weight to items with smaller values of i
in earlier list positions, and wd scales the rate at which this advantage
decays with i. These early-list items may benefit from extra weight
strength due to greater novelty, attention or energy (Brown et al.,
2000; Farrell, 2012; Lohnas et al., 2020; Page & Norris, 1998;
Sederberg et al., 2008; Tulving & Rosenbaum, 2006), and also
shares similarities with positional code models attributing greater
weight to early list items (for a detailed discussion see Logan &

Figure A1
Neural Similarity During Study by Study Lag

Note. (A) CMR predicts that neural similarity in temporal context between two items should decrease as a function of lag. In two-task lists, items presented
within the same event should have identical neural similarity values as in one-task lists, regardless of task type. (B) Participant data. As predicted by CMR (and
as confirmation of our approach to calculate a neural measure of temporal context), neural similarity decreases as a function of lag for items in control lists, and
for items from the same event in two-task lists. (C) Further subdividing by task type, neural similarity also decreases with lag in participant data. Error bars
represent Loftus and Masson (1994) 95% confidence intervals. See the online article for the color version of this figure.
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Cox, 2021). In addition to being updated by experimental associa-
tions, CMR also stores pre-experimental semantic associations.
However, we omit details of this process as it is less important in
the current study where we average across serial positions and the
lists contain mostly unrelated words.
Once CMR is presented with a list of items, the model next attempts

to ‘recall’ items as a participant would. The model’s current state of
context, reflecting the temporal history of studied items, is used to
cue recall. Specifically, a feature strength is determined for each
item, based on their relativeweight in context: fINr = MCFcr , where ele-
ments of fINr correspond to studied items. These feature strengths are
then used as input to a noisy decision process that outputs a single
recalled item, where itemswith larger strengths have a greater probabil-
ity of being recalled (Usher & McClelland, 2001). As described in the
next paragraph, because these feature strengths are determined from the
current state of context, items with similar context states to the current
context (i.e., items with shared temporal context or source context) are
more likely to be recalled. At the beginning of an immediate free recall
period like the current study, this cues items presented at the end of the
list, causing CMR to predict the recency effect. Furthermore, the
heavier weighting of early list items supports recall of early list
items, leading CMR to predict the primacy effect (Figure A2A).
Once CMR recalls an item, this item is then presented to the

model again, and updates context according to Equation A1. Thus,
a recalled item generates an input to context, and now this input
includes the context from when the just-recalled item was originally
studied. In addition, the rate at which context is updated, β, can vary
between study and recall. Thus, the temporal context drift rates dur-
ing study (encoding) and recall are termed and btemp

enc and btemp
rec ,

respectively. Once context is updated from the new item, this new
state of context is used to recall another item. In this way, recall of

an item i leads to reinstatement of the context of item i, and thus pro-
motes recall of items with similar context states to i, including items
with similar temporal contexts (i.e., items presented nearby on the
list), as well as items with similar source contexts (i.e., items pre-
sented with the same task). This critical assumption of context
updating during retrieval leads to CMR’s predictions of neural rein-
statement (see Figure 2C) and temporal contiguity in the behavioral
lag-CRPs (see Figure 2A).

Instead of determining the parameter values that would best cap-
ture the present data, here we examined whether CMR could account
for the data qualitatively based on best-fit parameters from a dataset
used previously (Polyn et al., 2009a). In this way, we were not fitting
CMR to the data presented here, but rather using pre-existing param-
eter values and simulated data to predict the pattern of results for this
data. To generate the CMR predictions, we presented the model with
the same lists as participants viewed in that original study. Thus, the
data used to generate CMR predictions included 45 participants with
631 control lists and 631 two-task lists each with list-length = 24.

Pure Association Model Variant

To assess the necessity of the temporal disruption mechanism in
CMR, we also examined predictions from a model variant which
shares identical properties to CMR except that event boundaries
do not disrupt temporal context (i.e., d= 0). Thus, this model variant
shares core assumptions with CMR: temporal context changes
slowly over time, and temporal context states are reinstated during
recall to influence neural activity and behavior. Using the best-fit
parameters for this model variant from Polyn et al. (2009a) as
shown in Table A1, we confirmed these core assumptions based
on predictions in control lists (Figure A3A).

Figure A2
Serial Position Curves

Note. (A) CMR predictions of the serial position curve for the control lists (lighter gray) and two-task lists (darker
teal). These data were simulated using the best-fit parameters and experimental lists of Polyn et al. (2009a), and thus
have a longer list-length than the experimental data. Yet critically, CMR predicts greater recall probability for early
serial positions (primacy effect) and for late serial positions (recency effect). (B) Serial position curves in the exper-
imental data for the control lists (lighter gray) and two-task lists (darker teal), also exhibiting a primacy effect and
recency effect. Error bars represent Loftus and Masson (1994) 95% confidence intervals. See the online article for
the color version of this figure.
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Critically, the predictions of the pure association model variant
were not consistent with the experimental data in two-task lists.
First, similarity in neural context during study was the same between
neighboring items regardless of whether they were studied within

the same event or different events (Figure A3B), inconsistent with
the reduced neural similarity of neighboring items studied in differ-
ent events (compare with Figure 3C). As a result, ERS did not differ
between neighboring same-event and different-event item pairs
(Figure A3C).

On a behavioral level, like CMR the pure association model var-
iant captures the enhanced recall probability of same-event items for
|lag|= 1 (Figure A3D–F; for preboundary items (M = 0.032,
SD = 0.112), t(169) = 3.72, CI = [0.0150, 0.0489], p = .0003,
d = 0.33; for boundary items (M = 0.026, SD = 0.110),
t(169) = 3.06, CI = [0.0091, 0.0426], p = .003, d = 0.19.
Thus, this increased probability may reflect shared event or task
information between the neighboring items. However, the pure asso-
ciation model fails to capture the reduced recall of items from differ-
ent events (in the experimental data: for preboundary items
(M = 0.158, SD = 0.103), t(169) = 20.11,CI = [0.1429, 0.1740],
p , .00001, d = 1.20; for boundary items (M = 0.114,
SD = 0.101), t(169) = 14.69,CI = [0.0984, 0.1289], p , .00001,
d = 1.43. Instead the model predicted approximately equal recall
probability to items in control lists. Taken together, these results
underscore that CMR requires the assumption that each event
boundary induces disruption to temporal context in order to make
qualitatively accurate predictions of neural activity and memory
behavior.

Appendix B

Controlling for Positional Effects

We conducted supplementary analyses to ensure that the feature
vectors, changing slowly with each studied item, reflected temporal
context rather than serial position information. Neural activity,
including activity recorded from the regions of interest used for fea-
ture vectors, can change slowly as a function of an item’s serial posi-
tion, as measured oscillatory power changes in EEG (Sederberg et
al., 2006; Serruya et al., 2014), event-related potentials (Rushby et
al., 2002; Wiswede et al., 2007), or at the level of individual MTL
units (Reddy et al., 2021; Umbach et al., 2020).
Whether the feature vectors represented a positional code or tem-

poral context, they should change slowly with each studied item.
However, if feature vectors coded for serial position, then the posi-
tional codes should reset with each list (Burgess & Hitch, 1999;
Conrad, 1960; Henson, 1996; Osth & Dennis, 2015). As a result,
the neural similarity between a feature vector for an item studied at
serial position i should be most similar to the feature vector for
item studied at serial position i + 1, irrespective of whether these
items were presented in the same list or not. By contrast, if feature
vectors change slowly over time, similarity across feature vectors
should decrease across lists (Howard et al., 2008; Lohnas et al.,
2015; Unsworth, 2008). We found that, for feature vectors of
items from successive serial positions in control lists (i.e., lag= 1),
similarity decreased with list distance, and thus the feature vectors
have properties of temporal context not positional codes (see
Figure B1 and also related text in Results; list – lag= 0 . list – lag
= 1:M= 0.265, SD= 0.131, t[169]= 26.36, CI= [0.2449,
0.2846], p, .00001, d= 1.702, list – lag= 1. list – lag= 2:

M= 0.065, SD= 0.179, t[169]= 4.76, CI= [0.0383, 0.0926]
p, 00001, d= 0.393, list – lag= 2 . list – lag= 3:M= 0.065,
SD= 0.181, t[169]= 4.65, CI= [0.0373, 0.0922], p, .00001,
d= 0.369).

We also conducted several analyses to rule out the possibility that
the autocorrelation property of feature vectors, averaged across serial
positions, was driven by a subset of serial positions. In particular, we
examined the feature values contributing to each feature vector in
each list. For each feature, we took the difference in values for
each successive pair of serial positions (1–2, 2–3, 3–4, etc.) within
each list. We next calculated the differences of these pairwise differ-
ences (so now we have the difference of 1–2 vs. 2–3, 2–3 vs. 3–4,
etc.). These difference of difference values help to convey the auto-
correlated component of the feature values. For instance, if the 1–2
versus 2–3 differences are small, this should reflect a greater autocor-
relation value in early serial positions, because the 1–2 difference is a
good predictor of the 2–3 difference. To equate variability across
features, we scaled the absolute value of the difference of difference
scores on a range from 0 to 1 (where 0 and 1 are the smallest and larg-
est, respectively, of the absolute value of difference of difference
scores for a feature in a list). Across all features, we divided the val-
ues at each set of serial positions into deciles (0–0.1, 0.1–0.2, etc.),
and plotted a histogram of the deciles for each set of serial positions
(Figure B2). If items in primacy positions have the greatest autocor-
relation, then those items should have values in lower deciles.
However, going against this account, a larger proportion of the val-
ues are contained the largest possible decile for items in earliest

(Appendices continue)

Table A1
Best-Fit Parameters of the Context Maintenance and Retrieval
Model From Polyn et al. (2009a)

Parameter Full Pure association

btemp
enc 0.776 0.767

btemp
rec 0.510 0.468

βsource 0.588 0.681
LCFsw 0.129 0.171
d 0.767 0
γFC 0.898 0.799
s 2.78 2.71
κ 0.111 0.053
λ 0.338 0.272
η 0.159 0.126
τ 0.174 0.145
ws 1.07 0.881
wd 0.981 0.641

Note. Parameters were determined using a genetic algorithm fitting
technique.
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serial positions when compared to the largest decile of other serial
positions.
Herewe did not want to average across lists, features or participants,

as mid-decile average activity may be a result of generally mid-decile
activity across features, or may average some high-decile features with
low-decile features. However, as a result, some participants contribute
more features than others. To consider whether the reduced autocor-
relation values are upheld across participants, the dashed black line
in each plot shows the mean decile value per participant, averaged
across all features and lists. Consistent with the results across features,
the results across participants also suggest that items from primacy

positions do not exhibit greater autocorrelation, rather the earliest
serial positions have the greatest mean decile value.

In addition to examining properties of feature vectors themselves,
we also examined how neural similarity by study lag (i.e.,
Figure A1B) may be influenced by differences in serial positions
of the feature vectors. Figure B3A shows neural similarity in control
lists divided by serial position, and reveals that neural similarity
decreases with absolute lag at all serial positions. Figure B3B
shows a similar pattern for items within the same event in two-task
lists. For these items, approximately 12% of serial position/lag pairs
do not follow the expected pattern of decrease in neural similarity as

(Appendices continue)

Figure A3
Predictions of the Pure Association Variant of the Context Maintenance and Retrieval Model

Note. This model variant assumes that a change in task information does not disrupt temporal context or cause an event boundary. (A) In control lists,
encoding-retrieval similarity (ERS) between the temporal context state of a recalled item and the temporal contexts of its neighbors during study. Lag refers
to the distance in serial position between two items from study (see Figure 1E). Like CMR, the pure association variant predicts that temporal context states will
be more similar between the recalled item and neighboring items from study. (B) Unlike CMR, the pure association variant predicts that neural similarity is
identical for two neighboring items within the same event or two items across different events. (C) The pure association model variant predicts that the recall of
an item bordering an event boundary leads to retrieval of that item’s temporal context states from study. Because these temporal context states do not incor-
porate disruptions, ERS values are nearly identical between items studied with the same task versus items studied with different tasks. (D) The pure association
variant predicts that, when compared to control lists (gray circles), transitions in two-task lists are enhanced for items recalled within the same event (darker teal
lines). By contrast, recall transitions across events (lighter orange lines) are equivalent to control lists. Both of these predictions are present for preboundary
items (squares) and boundary items (triangles). (E) In the experimental data (replotted from Figures 2B, 5C&D), participants exhibit reduced recall transitions
in two-task lists to items from different events (lighter orange lines), whether transitioning from preboundary items (squares) or boundary items (triangles). By
contrast, participants exhibit similar or greater transitions for items recalled within the same event (darker teal lines). (F) The full CMR model makes both
critical predictions of reduced transitions for items from different events and enhanced transitions between items of the same event. For more distant items
with darker teal lines, items may be from the following event. Error bars represent Loftus and Masson (1994) 95% confidence intervals. Sim.=
Similarity. See the online article for the color version of this figure.
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a function of absolute lag. This is not surprising given that not as
many serial positions contribute at each lag, both because there are
fewer two-task lists than control lists and because we only include
two items at a lag if they are studied in the same event.
Furthermore, because feature vectors were calculated from the con-
trol lists, this may also lead to noisier neural similarity in two-task
lists. Nonetheless, if there were any strong effects of serial position
on lag, going in opposition to the expected result of similarity
decreasing with lag, we would expect these differences to be more
pronounced in the control lists, where it is more likely that items

from nonprimacy positions would contribute less noisy data to the
similarity values. Thus, we take this set of results to be qualitatively
consistent with CMR’s prediction that neural similarity decreases
with lag, irrespective of serial position.

In addition, in two-task lists we recalculated neural similarity
at study excluding items from the first event, thus greatly
reducing the influence of early list items with greater effects of
differential neural activity. Even with this exclusion, neural similar-
ity was significantly greater for neighboring items with the same
event than different events (Figure B5A) (M = 0.007,
SD = 0.048), t(169) = 1.98, CI = [0.0000, 0.0144], p = .0495,
d = 0.044.

Another impact of serial position effects may manifest from dif-
ferences in recall probability, as recall is more likely for items
from earlier and later serial positions (Kahana, 2012; Murdock,
1962, Figure A2). Furthermore, in analyses of recall by lag, not all
serial positions are possible at all lags, raising a concern that some
serial positions may contribute to some lags more than others. For
the ERS analysis in control lists, we verified that this analysis reflects
a fair representation across serial positions by calculating the mean
number of items contributing to each lag and serial position in
Figure 2D. Figure B4 shows the mean number of serial positions
contributing to each lag, whether the transition was from that serial
position as a recalled item (left) or to that serial position as a studied
item (right). Transitions are somewhat less likely from recency posi-
tions, but this is less surprising given that we exclude the first three
output positions, and immediate free recall generally begins with
these recency items (Healey & Kahana, 2014; Howard & Kahana,
1999).

In two-task lists, we alleviated concerns that primacy items may
dominate recall effects by recalculating the critical significant find-
ings in two-task lists but excluding transitions to or from items in
the first event of each list. With this exclusion, the lag-CRPs were
qualitatively similar to those including items from the first event,
with greater recall probability for transitions to a same-event
neighbor, whether from a preboundary item (Figure B5B) or from
a boundary item (Figure B5C). Although the control lag-CRP is
less intuitive to calculate for this analysis because there are no
first event items in control lists, we nonetheless interpret the rela-
tively similar numbers and qualitative pattern of results as evidence
that items from the first event did not drive this effect in two-task
lists.

(Appendices continue)

Figure B1
Neural Similarity of Feature Vectors for Item Pairs
From Adjacent Serial Position Numbers and the
Same Task in Control Lists, as a Function of List-Lag

Note. Data are averaged across all possible values of i and i
+ 1 (1 and 2, 2 and 3,…, 15 and 16) for item pairs in control
lists studied with the same task (size task, animacy task, or no
task). Neural similarity of these item pairs is plotted as a func-
tion of list-lag, where list-lag= 0 reflects two items from the
same list, list-lag= 1 reflects two items from successive lists
such as lists 3 and 4. Consistent with properties of temporal
context but inconsistent with properties of positional codes,
neural similarity decreases as a function of list-lag. Error
bars represent Loftus and Masson (1994) 95% confidence
intervals.
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Figure B2
Histogram of Feature Value Differences Contributing to Each Feature Vector

Note. (A) Examples of feature vector values for two control lists. (B) The absolute value of the difference of differences, rescaled from 0
to 1. These feature value lists were chosen to be representative of more or less autocorrelation in primacy positions (light line and dark line,
respectively). (C) Histogram of normalized (i.e., absolute value and rescaled) difference of differences for feature vectors across lists, at
each set of serial position values. These values were averaged across feature values across lists and participants. Dashed black lines indi-
cate the mean across feature values when averaged by list and participant.

(Appendices continue)
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Figure B3
Neural Similarity During Study as a Function of Lag, Divided by Serial Position

Note. Error bars represent + 1 SE of the mean. (A) Control lists. (B) Items studied with the same task in two-task lists.

Figure B4
Number of Serial Positions Contributing to ERS Values at Each Lag in Control Lists (Figure 2D)

Note. Left: Counts of the ERS values contributing to each lag at each serial position of the recalled item. Right:
Counts of the ERS values contributing to each lag at each serial position of the encoded item. See the online article
for the color version of this figure.
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Appendix C

Time Window of Context Reinstatement

We evaluated which timewindow would reflect the strongest con-
text reinstatement based on negative ERS lags. In 100 ms incre-
ments, we evaluated time windows beginning from − 1, 000 to
−500 ms relative to the participant’s recall vocalization, ranging in
duration from 300 to 800 ms. We found that context reinstatement
was strongest for the recall time window of − 1, 000 to −600 ms,
and used this time window in all analyses. Although choosing
among several time windows may seem to present a selection bias,
the purpose of time window selection was not to identify the exis-
tence of the effect of context reinstatement. Based on Manning et

al. (2011), we sought to replicate context reinstatement in scalp
EEG. Due to differences in recording techniques, we anticipated
that the time window might differ between scalp and intracranial
EEG. We chose such a time window to then evaluate how event
boundaries in two-task lists impact feature vectors with properties
of temporal context. Furthermore, because we examined time win-
dows with overlapping timepoints, and because the data at each
timepoint incorporates the same electrodes, therewas a cluster of sig-
nificant t-values for time windows with overlapping timepoints to
the time window with the strongest effect of context reinstatement.

Figure B5
Analyses in Two-Task Lists Excluding Items From the First Event

Note. (A) Neural similarity at study. Collapsed across preboundary and boundary items, neural similarity is greater between two neighboring items within the
same event than two items across different events, even when excluding items from the first event in each list (see also Figure 3). Error bars represent+ 1 SE of
the mean. *p, .05. (B,C) Recall transitions in two-task lists. Even when excluding items from the first event, participants are more likely to recall items not
separated by an event boundary, and more likely to be within the same event (darker teal lines) than items separated by an event boundary and from a different
event (lighter orange lines), whether from a preboundary item (B) or from a boundary item (C). For more distant items with darker teal lines, items may be from
the following event. Cond. Resp. Prob.=Conditional response probability. Error bars represent Loftus andMasson (1994) 95% confidence intervals. See also
Figure 5. In all panels, dashed lines indicate the values when items from the first event are included in the analysis. See the online article for the color version of
this figure.

Figure C1
Size of the Effect of Neural Similarity by Lag, at Each Evaluated Time Window

Note. Dashed boxes correspond to the time window used in all analyses.
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Although we chose the time window based on negative lags, there
was a cluster around this window for positive lags as well
(Figure C1).
In addition to examining which time window exhibited the great-

est effect out of all considered windows, we also determined the sig-
nificance of the selected time window when compared to a null
distribution. For each subject and time window, we calculated the
two ERS values which were used in our determination of context
reinstatement: (a) lag=−1; (b) the average of lags − 3, − 4, − 5.
For each subject, we shuffled the lag labels of the ERS values at

each time window, and calculated the maximum t value across all
windows. We did this for 1,000 shuffles of the ERS values, thus
acquiring a null distribution of 1,000 t values. The actual t value
fell on the null distribution with one-tailed p= .031, suggesting
that context reinstatement is greater than expected by chance across
time windows.

Received September 23, 2021
Revision received November 17, 2022

Accepted November 19, 2022 ▪

E-Mail Notification of Your Latest Issue Online!

Would you like to know when the next issue of your favorite APA journal will be available
online? This service is now available to you. Sign up at https://my.apa.org/portal/alerts/ and you
will be notified by e-mail when issues of interest to you become available!

LOHNAS, HEALEY, AND DAVACHI1872

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
ti
n
pa
rt
or

w
ho
le
m
us
tg

o
th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n.


	Neural Temporal Context Reinstatement of Event Structure During Memory Recall
	Outline placeholder
	Event Segmentation and Episodic Memory
	An Emerging Role of Temporal Context in Event Segmentation and Episodic Memory
	The Current Study

	Method
	Dataset
	Participant Characteristics
	Sampling Procedures
	Data Diagnosis
	Data Collection
	Electrophysiological Recordings
	Neural Feature Selection
	Similarity Values
	Neural Similarity Between Studied Items
	Encoding-Retrieval Similarity


	Analytic Strategy
	Transparency and Openness

	Results
	Temporal Context in Control Lists
	Evidence of Temporal Context in Recall Behavior
	A Neural Signature of Temporal Context During Study
	Reinstatement of Temporal Context in Control Lists

	The Influence of Event Boundaries on Temporal Context Representations
	Event Boundaries Modulate Temporal Context During Study
	Reinstatement of Event Disruptions to Temporal Context
	Event Disruptions to Temporal Context From Study Influence Recall Behavior
	Relating Neural Temporal Context to Recall Behavior


	Discussion
	Conclusions
	References
	Model Simulations
	Context Maintenance and Retrieval (CMR) Model
	Pure Association Model Variant
	Controlling for Positional Effects
	Time Window of Context Reinstatement



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /None
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /None
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.36000
    9.36000
    9.36000
    9.36000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


