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Predictions transform memories: How expected versus unexpected events 
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A B S T R A C T   

Our brains constantly generate predictions about the environment based on prior knowledge. Many of the events 
we experience are consistent with these predictions, while others might be inconsistent with prior knowledge and 
thus violate our predictions. To guide future behavior, the memory system must be able to strengthen, transform, 
or add to existing knowledge based on the accuracy of our predictions. We synthesize recent evidence suggesting 
that when an event is consistent with our predictions, it leads to neural integration between related memories, 
which is associated with enhanced associative memory, as well as memory biases. Prediction errors, in turn, can 
promote both neural integration and separation, and lead to multiple mnemonic outcomes. We review these 
findings and how they interact with factors such as memory reactivation, prediction error strength, and task 
goals, to offer insight into what determines memory for events that violate our predictions. In doing so, this 
review brings together recent neural and behavioral research to advance our understanding of how predictions 
shape memory, and why.   

1. Introduction 

Much of what we experience is highly predicted. Our knowledge 
about the world allows us to predict what will happen when we enter a 
restaurant, visit a friend, or listen to a familiar song. Occasionally, 
however, a surprising event occurs that violates our expectations. While 
it is useful to remember events that are consistent with our predictions, 
as well as those that violate them, these different types of events pose 
different demands on our memory system. Consistency with prior 
knowledge might reinforce our predictions, increasing the strength of 
predicted information in memory and linking it to existing knowledge 
structures through memory integration. Inconsistency, in turn, might 
require that we either update our existing knowledge to allow for the 
integration of novel information, or that we store conflicting informa-
tion as a separate memory (memory separation), in case our existing 
knowledge becomes relevant again in the future (Bein et al., 2020; Love 
et al., 2004; McClelland et al., 1995, 2020; Piaget, 1952; van Kesteren 

et al., 2012). The question of knowledge updating is even more pressing 
in the current time of social media and alternative facts. We are 
constantly exposed to pieces of information that vary both in how 
truthful and how surprising they are. As such, our memory system must 
be able to flexibly update our existing knowledge (if new information is 
believed to be true), dismiss the information altogether (if it is believed 
to be false), or hold on to the information as a separate memory (if its 
accuracy is unknown). 

We build on prior proposals within the predictive coding framework 
(Friston, 2005, 2018; Lisman and Redish, 2009), which argue that most 
of our experiences involve predictions that are based on pre-existing 
memories. Stimuli in the environment serve as memory cues, leading 
to the reactivation of related memories (Anderson, 1974; Anderson and 
Milson, 1989; Collins and Loftus, 1975). This reactivation of related 
memories encompasses reinstatement of neural activity patterns that 
represent our learned expectations of what is likely to happen in a 
particular environment (Ahissar and Hochstein, 2004; Bar, 2009; 
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Buckner, 2010; Danker and Anderson, 2010). For our purposes, a pre-
diction can be thought of as the reactivation of learned representations 
that are relevant to what is about to occur. For example, upon entering a 
kitchen, related memories of objects typically found in a kitchen are 
reactivated, forming a prediction that we are likely to encounter these 
objects. Further, we use eye movements to scan our environment in a 
sequential manner, focusing first on some aspects of the world and then 
on others (Ahissar and Hochstein, 2004; Bar, 2009; Gronau, 2021; Wynn 
et al., 2020). Thus, memory-based predictions typically unfold across 
time, even when we are exposed to both the predictive cue and the 
predicted (or unexpected) information at the same time. To continue 
with our kitchen example, one might first focus on one specific object (e. 
g., a fridge), which in turn leads to the reactivation of related memories 
that reflect predictions about what additional objects should be found 
nearby (e.g., a kitchen sink). In this sense, in a familiar context, our brain 
can generate predictions about what stimuli or events are likely to occur. 
Events that are consistent with our prior knowledge are consistent with 
the predictions generated based on this knowledge. Events that are 
incongruent with our prior knowledge, conversely, violate our pre-
dictions (Fig. 1). 

Previous research has established that consistency and inconsistency 
with prior knowledge and predictions impact novel learning, as well as 
the cortical and hippocampal networks that support learning and 
memory (reviewed in Alonso et al., 2020; Fernández and Morris, 2018; 
Gilboa and Marlatte, 2017; Preston and Eichenbaum, 2013; van Kes-
teren et al., 2012). In particular, recent neuroimaging work in humans 
has capitalized on multivariate analysis methods, such as representa-
tional similarity analysis (RSA; Kriegeskorte et al., 2008), to measure the 
similarity between activity patterns elicited by different memories. By 
probing the representations of interrelated memories, research using 
these approaches has begun to uncover how new experiences and 
existing knowledge become integrated or separated in the brain (e.g., 
Audrain and McAndrews, 2022; Bein et al., 2020; Molitor et al., 2021; 
Schlichting et al., 2015; Sommer et al., 2022; Wu et al., 2023). In this 
review, we summarize this emerging evidence together with recent 
behavioral studies (E.g., Antony et al., 2022; Bein et al., 2021; Greve 
et al., 2017; Popov et al., 2019; Quent et al., 2022; Tompary et al., 2020; 
Tompary and Thompson-Schill, 2021; Wing et al., 2022) to discuss how 
expected versus unexpected information becomes represented in the 

brain and shapes memory formation (Fig. 2). 

2. Consistency with prior knowledge promotes neural 
integration that benefits, but also biases, memory 

Intuitively, when new information is consistent with our expecta-
tions, that experience should be easily integrated with our existing 
knowledge (unless the experience is perfectly and fully predicted, which 
might happen only in theory, at which point no further learning might 
take place). Indeed, this idea is reflected in prior research showing that 
consistency with prior knowledge is associated with altered hippocam-
pal and cortical dynamics during learning (Amer et al., 2019; Bein et al., 
2014; Brod et al., 2015, 2016; Brod and Shing, 2018; Maril et al., 2011; 
Reggev et al., 2016; Staresina et al., 2009; Tse et al., 2007, 2011; van 
Buuren et al., 2014; van der Linden et al., 2017; van Kesteren, Fernández 
et al., 2010; van Kesteren, Rijpkema et al., 2010; van Kesteren, Beul 
et al., 2013; Wang et al., 2012; Yacoby et al., 2023), theorized to reflect 
the rapid integration of novel information (initially represented in the 
hippocampus) into existing neocortical knowledge stores (Alonso et al., 
2020; McClelland, 2013; McClelland et al., 2020; van Kesteren et al., 
2012). By focusing on univariate activation and functional connectivity, 
however, this prior work could not directly probe the neural represen-
tations of related memories. More recently, several studies have directly 
asked whether consistency with prior knowledge promotes integrative 
memory representations (Fig. 2a). Audrain and McAndrews (2022) 
presented participants with scene-item pairs that were either consistent 
or inconsistent with prior knowledge (e.g., beach-starfish or 
kitchen-elephant; see Fig. 3a for an illustration). After three days of 
consolidation, participants were cued with the items and tested for their 
memory of the associated scene. In the medial prefrontal cortex (mPFC), 
the neural representations of items previously presented with the same 
scene became more similar to each other compared to items presented 
with another scene. Importantly, this pattern of increased similarity was 
observed only when the items were previously presented with a 
semantically congruent scene, suggesting that consistency with prior 
knowledge promotes integration between related memories (but see 
Tompary and Davachi, 2017). 

In another study, Sommer et al. (2022) taught participants hierar-
chical schema knowledge about a group of insects. After this knowledge 

Fig. 1. Prior knowledge allows us to make memory-based predictions about novel events, such as seeing a toaster and expecting that toast will soon follow. These 
predictions can either be met (i.e., consistent with prior knowledge) or violated (i.e., inconsistent with prior knowledge, such as seeing a frog in your kitchen next to 
the toaster). 

O. Bein et al.                                                                                                                                                                                                                                     



Neuroscience and Biobehavioral Reviews 153 (2023) 105368

3

was acquired through several weeks of intensive training, participants 
learned new schema-related facts about these insects. In both the mPFC 
and precuneus, the neural representations of new facts about insects in 
the learned schema were more similar to each other, as compared to the 
similarity between new facts learned about a different class of organisms 
(the names of which were familiar to participants, but which were not 
associated with a hierarchical schema). Further, the neural representa-
tions of novel facts about insects were also more similar to the 

representations of the schema insects themselves, providing evidence for 
integration between previously acquired schematic knowledge and new, 
related facts. Together, these studies suggest that consistency with prior 
knowledge promotes two types of neural integration: (1) integration 
between novel events consistent with the same schema, and (2) inte-
gration between these memories and prior knowledge representations. 

Of note, the interpretation of these neuroimaging studies as memory 
integration relies on the assumption that increased similarity between 

Fig. 2. Hypothesized neural and mnemonic outcomes for events that meet (a) vs. violate (b) our predictions. We conceptualize representations of elements of 
experiences as nodes with links between them, illustrated here by circles with connecting lines, respectively. These nodes and links can be thought of as belonging to 
a theoretical neural network or an associative network model, or as neurons (nodes) and synapses (links) in neural ensembles. The top illustrations reflect repre-
sentations active during encoding. Representational changes can occur already during encoding, or during consolidation or retrieval. (a) When an experience 
conforms to our predictions, neural integration — that is, increased overlap between memory representations — is likely to occur (resulting in neural similarity). We 
hypothesize that increased overlap occurs via the strengthening of existing links between nodes representing elements of an experience, or via the creation of new 
links, potentially leading to more shared nodes. Integration can be either between different elements of the experience (e.g., between novel images of a toaster and 
toast), or between the novel experience and existing knowledge structures (e.g., between the novel association and your general knowledge about kitchens). 
Integration can promote both enhanced associative memory as well as increased susceptibility to false memories for other knowledge-consistent details. (b) In 
contrast, when events violate our predictions, both neural integration and separation — whereby memory representations become less similar/overlapping — can 
occur. Potential factors influencing separation or integration in response to prediction errors are illustrated in the black inset. Separation can happen via multiple 
mechanisms, such as creating a new representation of the novel experience (toaster-frog association), fully distinct from that of the pre-existing memory prediction 
(toaster-toast association), or by weakening links between nodes or inactivating nodes initially shared by both elements, resulting in fewer shared nodes (not 
illustrated here). Integration may promote the updating of prior knowledge (to accommodate the previously unexpected information). Separation may enhance 
memory for the violating information itself, and lead to distinct memories for both the prior prediction and the unexpected experience. Question marks reflect that 
these hypotheses remain to be empirically tested. Potential factors that might shape the fate of memories for knowledge-inconsistent information towards either 
integration or separation are illustrated in the black inset box (see main text for details). 
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neural representations reflects the integration between memories. 
Although this interpretation is generally accepted, it is plausible that 
individual memory traces have remained unchanged, but that after 
learning, the presentation or remembrance of one item triggers the co- 
activation of associated memories. In this case, increased neural simi-
larity between an item and its associate might reflect the fact that both 
individual representations are active in the brain at the same time, 
rather than a fully united and integrated representation. Although it is 
difficult to disambiguate between these possibilities with tools like fMRI 
or EEG, both explanations are consistent with the idea that memory 
integration has occurred. Even if the representations of constituent 
memories are left separated, the fact that their activation becomes 
interdependent after learning implies that those representations are 
linked together in the brain. 

Paradigms using stimuli that unfold sequentially (Fig. 3d) also 
emphasize the role of the hippocampus in the integration of knowledge- 
consistent events. The hippocampus is known to mediate sequential, 
memory-based predictions (Kok and Turk-Browne, 2018; Schapiro et al., 
2012; Shohamy and Turk-Browne, 2013). Sequential learning, in 
particular, increases the representational similarity between members of 
the learned sequence, presumably reflecting prediction of the sequence, 
as well as neural integration between sequence elements (e.g., Paz et al., 
2010; Sakai and Miyashita, 1991; Schapiro et al., 2013). Memory pre-
diction and integration are likely dependent on the process of pattern 

completion, whereby a full memory trace (e.g., predicted information, 
or other related memories) is reinstated from a partial cue. Within the 
hippocampus, pattern completion is typically associated with subregion 
CA3 (Hasselmo and Eichenbaum, 2005; Horner and Doeller, 2017; 
Knierim and Neunuebel, 2016; Marr, 1971; O’Reilly and McClelland, 
1994; Treves and Rolls, 1994; Yassa and Stark, 2011). A recent study by 
Yousuf et al. (2021) first cued participants with a category name (e.g., 
“furniture”), allowing predictions of possible category members to 
emerge, and then presented participants with an item that was either a 
member of the cued category (e.g., “table”) or not (e.g., “banana”). 
Univariate activation in CA3 correlated with memory of 
category-consistent, but not inconsistent, objects. This result is in line 
with the idea that CA3 pattern completion promotes memory for events 
that are consistent with our predictions (see Grande et al., 2019; Horner 
et al., 2015 for related findings). Pattern completion in CA3 can, in turn, 
facilitate the full reactivation of related, pre-existing memories in the 
cortex through hippocampal-cortical connections (Danker et al., 2017; 
Griffiths et al., 2019; Hindy et al., 2016, 2019; Michelmann et al., 2021; 
Norman and O’Reilly, 2003; Ritchey et al., 2013; Shohamy and 
Turk-Browne, 2013). 

Thus far, we have discussed evidence that consistency between 
related experiences might promote neural integration. Do congruency 
and neural integration impact integrative or associative forms of mem-
ory for such experiences? While the study by Yousef et al. (2021) focused 

Fig. 3. Illustrative examples of paradigms used to test memory for information that is consistent versus inconsistent with predictions or prior knowledge. (a) In-
formation is either congruent or incongruent with existing semantic knowledge, and therefore is either consistent or inconsistent with predictions arising from 
semantics. (b) In an AB/BC learning paradigm, participants first learn an association between two items, A-B, and then subsequently see one of those items, B, 
presented with a new item, C, thereby violating their predictions of having item B associated with item A. (c) In one example of novel information being added to a 
structured schema, participants first learn a spatial schema (a grid of object locations), then encode grids of novel objects that are either consistent with that spatial 
schema (learned in the same locations) or inconsistent with it (different locations). This kind of paradigm has also been done using non-spatial schemas, as well as 
pre-existing schemas learned through lifetime exposure. (d) In a sequential learning task, participants first learn sequences of stimuli through repeated exposure, and 
are then presented with sequences that either conform to or violate the learned sequence. Note that some previous studies combined elements across paradigms, e.g., 
sequential learning tasks in which item sequences are consistent or inconsistent with semantic knowledge (e.g., “theater – popcorn – candy” vs. “theater – popcorn 
– basketball”). 
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on item memory, numerous other studies provide evidence that con-
sistency with prior knowledge or expectations particularly benefits 
associative memory (Fig. 2a). For example, memory for the association 
between two items of a pair is enhanced when items are semantically 
congruent (e.g., kitchen-microwave; Amer et al., 2018; Bein et al., 2015; 
Frank et al., 2018; Quent et al., 2022; Tompary et al., 2020; Tompary 
and Thompson-Schill, 2021; van Kesteren, Beul et al., 2013; Wu et al., 
2023). Such semantic congruency also promotes unitization in memory, 
or the integration of the two components into one representation, which 
in turn improves speed and accuracy during memory retrieval (Gronau 
et al., 2008; Tibon et al., 2014; see also Tibon et al., 2018 for related 
findings). Further, this integration might be directional. In one inter-
esting behavioral study, participants encoded both congruent (e.g., 
kitchen-microwave) and unrelated (e.g., kitchen-pencil) word pairs 
(Popov et al., 2019). The authors found that for congruent pairs, asso-
ciative memory was asymmetric: specifically, cueing participants with 
`kitchen` during an initial memory test facilitated future retrieval per-
formance when `kitchen` was again used as the memory cue, but not 
when `microwave` was the cue. In contrast, for unrelated pairs, asso-
ciative memory performance improved across retrieval attempts irre-
spective of which item in the pair was used as a cue, suggesting that 
associations were represented symmetrically. An intriguing possibility is 
that congruency with prior predictions enhances neural integration and 
associative memory specifically in the direction in which the prediction, 
or pattern completion, unfolds. 

Congruency also enhances the integration of information across 
different events. For example, Frank et al. (2018) presented participants 
with sequential pairs of semantically congruent images (e.g., all images 
related to a “theater” theme). Memory for these pair sequences was 
compared to sequences in which some of the pairs included a semanti-
cally incongruent item, as well as sequences without a coherent theme. 
Congruency increased memory for pairs, as well as participants’ ability 
to accurately retrieve which item pairs belonged to the same sequence, 
suggesting that semantic relatedness promoted integration between 
pairs in the sequence. Additional work has found that semantic relat-
edness across word pairs (e.g., peace-razor and peace-shave) can increase 
the dependency between these memories, such that the more the pairs 
were related, the higher the likelihood that if one pair was remembered 
correctly, so would be the other (Antony et al., 2022). This dependency 
suggests that semantic overlap increases memory integration not only 
between components of the same experience (e.g., between simulta-
neously presented items in semantically congruent pairs) but also across 
congruent experiences from different learning experiences. 

In studies that did not address congruency with prior knowledge, the 
similarity of neural representations in the cortex and the hippocampus 
has been found to promote associative memory (DuBrow and Davachi, 
2014; Ezzyat and Davachi, 2014). Additionally, a recent study showed 
that neural similarity between exemplars of a familiar semantic category 
(i.e., ‘birds’) mediated subsequent memory between the exemplars and a 
newly learned verbal label (Bruett et al., 2020). While these studies 
provide some clues, understanding precisely how integrated neural 
representations promoted by prior knowledge facilitate subsequent 
memory of that information is an open question. 

While prior knowledge provides scaffolding for integrative memory, 
that same knowledge can also bias memory and lead to mistakes 
(Fig. 2a). We use our semantic or schematic knowledge to make in-
ferences and fill in gaps in our memory. This reconstruction process 
usually works, because — by definition — a large proportion of our 
experiences matches our learned expectations. However, the integration 
of novel experiences with existing knowledge structures can also lead to 
false memories, (Alba and Hasher, 1983; Bartlett, 1932; Schacter, 2022). 
A classic example of this phenomenon is the DRM paradigm, in which 
participants are presented with a list of semantically related words. At 
retrieval, they are then likely to incorrectly endorse memory for words 
that belong to the same semantic context, but were not actually studied 
(Deese, 1959; Roediger and McDermott, 1995). Such false memories are 

associated with increased similarity between neural representations of 
studied items and those of semantically related but unstudied items, 
both in the temporal lobe (Chadwick et al., 2016; Zhu et al., 2019), as 
well as in the left inferior frontal gyrus (LIFG) and parietal cortex (Ye 
et al., 2016; see also Lee et al., 2019 for related findings, and Dennis 
et al., 2022 for review). 

Using another paradigm, Tompary and Thompson-Schill (2021) 
presented participants with images of items from different semantic 
categories in different locations on a screen. Each semantic category was 
clustered around a location, which allowed the authors to examine how 
category membership biased memory for item locations. The authors 
found that location memory for typical category members (e.g., a car-
dinal is a typical member in the ‘birds’ category, while a toucan is less 
so) was more biased towards the cluster center, relative to atypical 
category members. In another study that used sequential presentation of 
semantically congruent and incongruent pairs, congruency enhanced 
memory, but also increased interference from other items in the 
sequence (Frank et al., 2018). Together, these studies show that inte-
grated representation promoted by prior semantic knowledge can 
impair memory reconstruction and suggest that the similarity of neural 
representations might underly these biases. An exciting question is 
whether the mnemonic benefits of neural integration must necessarily 
come with the downside of memory biases, or whether these can be 
dissociated, such that we can benefit from integration, without paying 
the cost. 

2.1. Prior knowledge promotes neural integration regardless of 
consistency, potentially in different brain regions 

Thus far, we have reviewed evidence for the idea that consistency 
between novel information and prior knowledge or expectations can 
lead to integrated memory representations. But, is consistency with 
prior knowledge required for cortical integration? Behaviorally, just as 
prior knowledge benefits memory for congruent information, numerous 
studies have found enhancements in associative and contextual memory 
when new information is learned in the presence of prior knowledge, 
even if the content of that new information is arbitrary with respect to 
the existing knowledge (Bein et al., 2019; Bellana et al., 2021; DeWitt 
et al., 2012; Gasser and Davachi, 2023; Liu et al., 2017; Reder et al., 
2013, 2016). For example, Gasser and Davachi (2023) found that when 
participants executed a highly familiar sequence of actions, temporal 
binding (but not item memory) between novel items studied simulta-
neously was enhanced, relative to memory for items studied during the 
execution of an unfamiliar action sequence. 

Looking at the brain, Bein et al. (2020) showed that in the LIFG, 
novel faces associated with famous faces showed increased neural sim-
ilarity to each other with learning. Critically, this effect was driven by 
representations of novel faces “moving closer” to those of famous faces, 
while famous faces’ representations remained relatively unchanged, 
suggesting that the novel faces became assimilated into the represen-
tation of their associated famous faces. In another study (Guo and Yang, 
2022), participants learned spatial arrangements of objects organized on 
grids (vs. control objects learned in random locations); see Fig. 3c). On 
the next day, participants learned associations between these objects 
and novel scene images. The authors found, first, that items from the 
same grid (i.e., the same spatial schema) were represented more simi-
larly than those from different grids in the lateral occipital cortex (LOC), 
suggesting that the items had become integrated based on a shared 
context. Second, they found greater neural similarity between individual 
object representations and corresponding object-scene pairs for objects 
that belonged to a spatial schema, compared to the similarity between 
objects that did not belong to a schema and their respective scene as-
sociates. This latter result suggests that novel learning evokes the 
reactivation of the schematic or contextual information associated with 
individual items — consistent with the study by Sommer et al. (2022) 
mentioned above. Thus, although consistency with prior knowledge 
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might enhance the reactivation of prior memories (van Kesteren et al., 
2020), such reactivation may occur, and in turn facilitate integration, 
even without consistency between old and new memories (see below for 
reactivation in the case of knowledge-inconsistent events). 

The degree to which consistency is emphasized in a particular 
paradigm might lead to differences in the cortical regions that construct 
integrated memory representations. Both Audrain and McAndrews 
(2022) and Sommer et al. (2022) included explicit manipulations of 
congruency and found increased similarity in medial cortical regions 
like the mPFC and precuneus. Other studies without this element of 
congruency, but which nevertheless engaged prior knowledge, have 
found similarity effects in lateral brain regions such as LIFG (Bein et al., 
2020) and LOC (Guo and Yang, 2022). Prior research has suggested that 
mPFC detects matches between existing semantic knowledge and new 
information (Hebscher and Gilboa, 2016; van Kesteren et al., 2012), 
potentially explaining why integration is found in the mPFC when 
consistency with prior knowledge is directly manipulated (Audrain and 
McAndrews, 2022; Sommer et al., 2022). When consistency with prior 
knowledge is not emphasized, lateral brain regions might be involved in 
the integration of new information. 

Another reason for the medial versus lateral distinction in these 
studies might be the degree to which prior knowledge is hierarchical. 
The mPFC in particular has a demonstrated role in representing complex 
and hierarchical schemas (Baldassano et al., 2018; Masís-Obando et al., 
2022; Reagh and Ranganath, 2023), such as that used by Sommer et al. 
(2022). The task used by Audrain and McAndrews (2022), in turn, was 
also amenable to a hierarchical structure, in that participants learned 
scene-item pairs where items either were or were not likely to be found 
within the higher-level scene context. In contrast, the other aforemen-
tioned studies implicated other types of knowledge that are not as 
strongly hierarchical, such as knowledge about a famous person (Bein 
et al., 2020), or spatial locations on one grid (Guo and Yang, 2022). This 
distinction could be important, as recent computational work suggests 
that hierarchically organized knowledge facilitates integration 
(McClelland et al., 2020). In sum, how integration promoted by prior 
knowledge is influenced by the type of prior knowledge, consistency 
with that knowledge, and the predictions it gives rise to, remains an 
open question. 

3. Prediction errors promote both neural separation and 
integration 

Events that are inconsistent with prior knowledge (i.e., those that 
elicit prediction errors) should promote learning and memory so that 
individuals can update inaccurate prior knowledge and generate better 
predictions in the future. Knowledge updating can be mediated by two 
processes: On the one hand, memory updating can occur by integrating 
new information into old knowledge structures, overwriting information 
that is no longer relevant or accurate. When this process occurs, we 
would expect to see increased neural similarity (i.e., integration) be-
tween old memories and conflicting new information. On the other 
hand, if pre-existing knowledge might become relevant again in the 
future, it is more adaptive to create separate representations of old and 
new memories, such that both pieces of information can be maintained 
for future use (Gershman et al., 2017; McClelland et al., 1995, 2020). 
Separate representations can be constructed by the encoding of incon-
sistent events within the hippocampus (at least initially), separately 
from existing cortical knowledge stores (Gershman et al., 2014; Love 
et al., 2004; McClelland et al., 1995, 2020; van Kesteren et al., 2012). 
Additionally, within the hippocampus, the process of pattern separation, 
i.e., the allocation of distinct memory representations for overlapping 
inputs (Treves and Rolls, 1994; Yassa and Stark, 2011), can facilitate the 
construction of distinct neural representations for events that violate 
prior knowledge (Frank et al., 2020). 

Emerging empirical evidence is consistent with the notion that 
events that violate prior memories promote both separated and 

integrated representations in the hippocampus and the cortex. In one 
study, Schlichting et al. (2015) presented participants with pairs of items 
(A-B) during an initial learning phase. Next, previously encoded B items 
were paired with a new C item (see Fig. 3b for a depiction of the AB/BC 
learning paradigm). These B-C pairs were likely to elicit prediction er-
rors because they violated the learned expectation that A should appear 
alongside B. The authors found that in the posterior hippocampus, 
representations of items A and C were more distinct after relative to 
before learning, consistent with the idea that these items had become 
separated in memory. In the anterior hippocampus, however, A-C items 
became more similar after learning — but only when A-B pairs were 
strongly learned first, and then A-C pairs were encoded during a second 
learning phase. When A-B and A-C learning was interleaved, such 
memory integration did not occur. Outside the hippocampus, Schlicht-
ing et al. (2015) found A-C separation and integration in different 
clusters in the prefrontal cortex. 

In another study, Bein et al. (2020) considered predictions borne out 
of well-learned semantic knowledge. This study presented participants 
with pairs of one famous and one novel face, and with pairs of two novel 
faces. The representations of faces in famous-novel pairs became sepa-
rated in the anterior hippocampus, which was in turn linked to suc-
cessful associative memory. Conversely, representations in novel-novel 
face pairs became more similar through learning. One interpretation is 
that in famous-novel pairs, the famous face reactivated prior knowledge 
about the relevant celebrity, while the novel face violated these expec-
tations, ultimately promoting separation. In the case of the two novel 
faces, because there was no prior knowledge, no memory-based pre-
dictions were violated, and thus no separation occurred. In contrast to 
the hippocampus, in the LIFG, novel faces became integrated with 
famous faces, i.e., with prior knowledge representations. 

In a different study, Yacoby et al. (2021) showed that representations 
of word pairs that were incongruent with prior semantic knowledge (i.e., 
words that had no meaningful connection to each other, such as “care-
ful” – “tomato”; also see Fig. 3a) were initially more similar to each other 
in the LIFG, providing evidence of integration between these memories. 
Interestingly, with learning, their representations became differentiated 
and reached the same level of distinction as congruent word pairs. Note 
that Yacoby et al. (2021) did not measure the similarity between the 
representations of items in a pair (i.e., between components of old and 
new memories), but rather measured the similarity between different 
pair representations (that were congruent vs. incongruent). As such, 
these effects potentially reflect a different process than the previous 
findings (Bein et al., 2020; Schlichting et al., 2015). Nevertheless, these 
results show that in the cortex and in the hippocampus, prediction errors 
evoke neural correlates of separation and integration. 

3.1. Influences on memory integration and separation in response to 
prediction errors 

3.1.1. Strength of memory reactivation 
Because this work supposes that violations of prior knowledge can 

trigger distinct kinds of representational changes in resulting memories, 
it is helpful to consider recent work on mechanisms that push the 
memory system toward integration or separation (Fig. 2b). Theoreti-
cally, the stronger the reactivation of prior memories, the larger the 
prediction error elicited by an inconsistent event, and the greater the 
interference between old and new memories. This interference arguably 
creates a larger need for pattern separation, to avoid confusion between 
similar but conflicting pieces of information. Separation can also pro-
mote the maintenance of both the original and the new memory (Favila 
et al., 2016; Gershman et al., 2014; Wanjia et al., 2021). Of note, the 
non-monotonic plasticity hypothesis (NMPH; Norman et al., 2006; Ritvo 
et al., 2019) argues that when the reactivation of an existing memory is 
high during novel learning, connections between the two memories will 
be strengthened, and integration will occur. When reactivation is 
moderate, these connections will instead be weakened, leading to 
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separation or differentiation between memories. Low reactivation 
should have no effects on memory traces. While empirical work using 
perceptual stimuli found such non-monotonic representational changes 
(Wammes et al., 2022), research that involved memory-based pre-
dictions and prediction errors has generally found a monotonic rela-
tionship. Specifically, stronger reactivation of prior memories correlated 
with more hippocampal pattern separation (Kim et al., 2017; Kim et al., 
2020), specifically in the DG/CA3 subregion (Molitor et al., 2021; note 
that DG and CA3 are collapsed together due to low spatial resolution in 
human fMRI, and that in CA1, another hippocampal subregion, stronger 
reactivation led instead to neural integration). Broadly, these studies 
have interpreted findings of memory separation through the lens of the 
NMPH, arguing that memory-based predictions evoked in these para-
digms led to relatively moderate levels of reactivation in the brain re-
gions examined. 

3.1.2. Context stability 
One additional possibility is that the relationship between reac-

tivation strength and representational change depends on the stability of 
the context in which those predictions, or prediction errors, arise 
(Fig. 2b). Previous work has found strong memory reactivation in 
response to both knowledge-consistent and knowledge-inconsistent in-
formation. In van Kesteren et al.’s (2020) study, participants showed 
greater memory reactivation of previously-learned A-B associations 
(measured by self-report and by classification of fMRI multivoxel acti-
vation patterns in ventral visual cortex) when novel B-C associations 
contained information that was semantically congruent (vs. incon-
gruent) with the original A item. Such reactivation, in turn, was asso-
ciated with better integration between the A and C items. In contrast, 
Wu et al. (2023) found that neural reactivation (measured by EEG 
whole-brain pattern similarity) of a just-encoded sequence (e.g., a series 
of photos depicting someone cooking) was greater when novel infor-
mation was incongruent (e.g., an image of a kite) versus congruent with 
the preceding sequence. This reactivation was correlated with worse 
item memory for the novel image. Of note, these studies used different 
paradigms and reactivation measures. Nevertheless, one speculative 
reason for the potential discrepancy is the context in which incon-
gruency, or prediction error, occurred. In Wu et al. (2023), prediction 
errors occurred when incongruent items appeared at the end of a highly 
stable and coherent event sequence (see also van der Linden et al., 
2017). When the unexpected object was encountered, reactivation of the 
prior event sequence may have been important for disambiguating these 
conflicting, adjacent experiences, and potentially discarding the novel 
contradictory information (but see Silva et al., 2019; Sols et al., 2017; 
Wahlheim et al., 2022; Wahlheim and Zacks, 2019). In van Kesteren 
et al. (2020), incongruent items encountered across A-B/B-C pairs were 
separated across time and learning blocks, perhaps lessening the need 
for disambiguation of these already distinct experiences, and therefore 
reducing the utility of reactivating existing memories in response to a 
prediction error (Zeithamova and Preston, 2017). Future work could 
clarify the consequences of memory reactivation on memory integration 
and separation across different levels of prediction-(in)consistency and 
across different learning contexts. 

Research on fear learning and extinction further illustrates how the 
magnitude of prediction error and the context in which they arise can 
influence memory separation. In these paradigms, animals first com-
plete a learning phase, in which a stimulus is paired with an aversive 
outcome (e.g., a room or a perceptual cue that predicts the delivery of a 
disturbing noise). Then, the association is extinguished by no longer 
pairing the stimulus with the outcome, leading the animal’s fear 
response to diminish or extinguish. If extinction is abrupt — thereby 
evoking a large prediction error due to the sudden absence of an aversive 
outcome — animals will later show spontaneous recovery of fear: after 
some delay, the fear will return (e.g., Bouton, 2004; Rescorla, 2004; 
Todd et al., 2014). This recovery is presumed to arise because the large 
prediction error leads the animal to infer that the extinction phase is a 

new context (or ‘latent cause’; Gershman et al., 2010, 2014, 2017), 
separate from the original fear context. As a result, the extinction 
memory is encoded separately from the original fear memory while that 
fear memory remains intact, which opens the possibility that the original 
fear will return when the animal is reminded of it. However, it has been 
shown that if extinction occurs gradually, for example by slowly 
reducing the frequency of shocks until they are fully eliminated, this 
should lead to weaker prediction errors. In this case, no new context is 
inferred, and the original fear memory is instead updated to reflect that 
the original context is now safe. Indeed, such gradual extinction has 
been shown to reduce spontaneous recovery (Gershman et al., 2010, 
2014; Song et al., 2022; similar notions of context integration vs. sep-
aration have also been applied to explain reconsolidation paradigms as 
in Misanin et al., 1968, Nader et al., 2000, Riccio et al., 2006, and 
Schiller et al., 2010; see Gershman et al., 2017). Broadly, this work 
provides additional evidence that prediction errors lead to memory 
separation, while also adding that the transformation of memories in 
response to prediction errors depends on both the strength of prediction 
errors and the inferences made about their source (Gershman et al., 
2010, 2017; Yu, 2021). 

3.1.3. Types of prediction errors and novelty 
The type of prediction error generated by an event might also bias 

memories toward separation versus integration (Fig. 2b). Previous 
research has used a Bayesian framework to conceptualize the relation-
ship between prediction error and memory (Greve et al., 2017; Quent 
et al., 2021). In this work, a prediction error is conceptualized as the 
difference between a ‘prior’, which encompasses one’s expectations 
about what is likely to occur (based on existing knowledge), and the 
‘evidence’, which reflects knowledge about what actually happened. 
These prior expectations can take many forms. For example, if a person 
has a ‘flat prior’ (indicating that they have no specific prediction about 
what is likely to occur), and then they encounter new evidence, this 
mismatch between expectations and reality would elicit a prediction 
error. However, a prediction error also arises when a person has a very 
clear prior (indicating that they have strong expectations about what is 
likely to occur), but then encounters contrasting evidence. While both 
cases generate prediction errors, and both have been shown to promote 
associative memory (Greve et al., 2017), these phenomenologically 
different prediction errors might differentially affect memory separation 
and integration. 

Similarly, previous conceptualizations differentiated between `ab-
solute novelty` and `contextual novelty` and proposed that they might 
be mediated by different neuromodulatory systems (Kafkas and Mon-
taldi, 2018b). These, in turn, could promote integration versus separa-
tion (Fig. 2b). Absolute novelty can be thought of as a prediction error 
coming from a flat prior: when a situation is fully novel, we should have 
no prior expectations about what is likely to occur. In contrast, 
contextual novelty arises when one has specific expectations in a given 
context, but then learns through evidence that their expectations were 
wrong (e.g., seeing a pillow case in the kitchen). It has been suggested 
that contextual novelty might promote dopamine input to the hippo-
campus, while absolute novelty might enhance acetylcholine input 
(Hasselmo et al., 1996; Kafkas and Montaldi, 2018b; Lisman and Grace, 
2005; Meeter et al., 2004). Acetylcholine has been found to enhance 
pattern separation and reduce pattern completion in hippocampal sub-
fields (Duncan and Schlichting, 2018; Hasselmo, 2006). Consistent with 
these findings, task manipulations that have putatively upregulated 
acetylcholine activity strengthened behavioral markers of pattern sep-
aration (Ruiz et al., 2021; Duncan et al., 2012). Interestingly, Sinclair 
et al. (2021) linked activity in the basal forebrain, a primary source of 
acetylcholine input to the hippocampus, with increased hippocampal 
pattern separation for contextual novelty. Thus, contextual novelty 
might promote memory through increasing separation and reducing 
pattern completion and integration. Intuitively, it makes sense that 
promoting separation while reducing pattern completion might be 
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especially important in the case of contextual prediction errors, given 
that context-based expectations will lead to the completion of the 
original prediction, and thus could override new, contrasting evidence 
(Bein et al., 2020). Conversely, when there is no strong prediction, as in 
the case of a flat prior or absolute novelty, suppression of hippocampal 
pattern completion might not be necessary to the same extent. In these 
circumstances, integration of novel information with existing knowl-
edge, rather than separation, may be more likely to occur. 

Interestingly, Duszkiewicz et al. (2019) make a similar distinction 
between types of novelty, but focus on different sources of dopaminergic 
inputs to the hippocampus and hypothesize different integration and 
separation outcomes. They define novel experiences with minimal 
connections to prior knowledge as ‘distinct novelty’ (similar to absolute 
novelty), while experiences that share some commonality with prior 
knowledge are termed ‘common novelty’. Common novelty, for 
example, might involve being in a familiar context that has some 
distinct, unexpected features (e.g., finding a pillowcase in a kitchen). 
Distinct novelty is said to activate dopaminergic input to the hippo-
campus from the locus coeruleus. This input is dense and leads to acti-
vation of co-occurring contextual details, which creates a distinct 
representation of that novel event embedded in its specific episodic 
context (Duszkiewicz et al., 2019). In contrast, common novelty, much 
like contextual novelty, is proposed to promote dopaminergic input 
from the ventral tegmental area (VTA) into the hippocampus, which is 
more targeted and therefore promotes only the reactivation of other 
related memories (e.g., memories of other kitchens, or general sche-
matic knowledge about kitchens) and leads to integration of the new 
experience with existing knowledge (Duszkiewicz et al., 2019). In our 
view, an integrated representation between experiences that share 
common features is dependent on the extent to which the unique ele-
ments of the novel experience are consistent with prior predictions eli-
cited by the shared context, or whether they trigger a prediction error (e. 
g., finding a novel piece of cookware in a kitchen vs. finding a pillow-
case). Nevertheless, it remains an open question precisely how different 
kinds of novel experiences (and the predictions or prediction errors that 
arise) impact neuromodulatory input to the hippocampus to bias the 
memory system toward integration versus separation (see Rouhani 
et al., 2023 for a related discussion). 

3.1.4. Goals 
Ultimately, integration and separation of knowledge-inconsistent 

events should serve an individual’s current goals (e.g., the need to 
distinguish related events) or future goals (e.g., the need to update 
knowledge vs. preserve old knowledge that might become relevant 
again) (Fig. 2b). Several studies show that neural pattern differentiation 
arises during situations where similar inputs lead to different outcomes, 
increasing the need for related memories to be stored as non- 
overlapping representations (Chanales et al., 2017; Favila et al., 2016; 
Kim et al., 2017; Wanjia et al., 2021). Indeed, in these situations when 
prediction errors arise, it can be beneficial to retain memory for both the 
original memory-based prediction and the violating novel information 
— perhaps even regardless of how strong the original prediction was. In 
other cases, the strength of memory reactivation can be indicative of 
future relevance. For example, the knowledge that restaurants are 
typically found in airports is very well-established and therefore is likely 
to be strongly reactivated when we enter an airport. This prediction of 
airports having restaurants is likely to remain relevant in the future, 
even if we encounter one experience that violates this expectation, such 
as visiting one small airport that has no restaurants (Yu et al., 2021). In 
this example, the strong reactivation of prior memories, and the pre-
sumably strong prediction error driven by the restaurant-less airport, 
might lead to the inference that this is another category of airport (e.g., a 
small, regional airport), or else an aberrant example. As such, an indi-
vidual may be more likely to create a separate memory for the unex-
pected event, thereby achieving the goal of preserving their prior 
memory (Gershman et al., 2014, 2017; Love et al., 2004). 

3.1.5. Intrinsic neural dynamics 
Interestingly, in some of the studies we reviewed (Bein et al., 2020; 

Molitor et al., 2021; Schlichting et al., 2015), separation and integration 
both occurred, in different brain regions, under the same external con-
ditions. An interesting possibility is that neural reactivation and pre-
diction error signals might manifest to different degrees in different 
brain regions (Bar, 2009; Danker and Anderson, 2010; Kok and 
Turk-Browne, 2018; Ritchey et al., 2013; Tompary et al., 2016; Xue, 
2018), potentially due to variation in intrinsic neural dynamics (e.g., the 
amount of excitatory versus inhibitory activity in a given brain region; 
Ritvo et al., 2019) — and that, in turn, could differentially promote the 
integration versus separation of neural representations. Thus, the brain 
might simultaneously create multiple representations to promote both 
updating of prior knowledge via integration and the preservation of 
prior knowledge alongside new conflicting memories via separation. 

3.2. Prediction errors promote a variety of mnemonic outcomes 

Does neural separation versus integration of knowledge-inconsistent 
events lead to different mnemonic outcomes? Theoretically, separated 
representations can lead to a distinct memory of the violating event, or a 
reduction in the integration between old and new memories, while in-
tegrated representations should promote associative memory between 
old knowledge and the new, violating event. Several recent behavioral 
studies have found evidence for both of these phenomena (Antony et al., 
2021; Bein et al., 2021; Ben-Yakov et al., 2021; Brod et al., 2018; Greve 
et al., 2017; Kafkas and Montaldi, 2018a; Wahlheim et al., 2022; 
Wahlheim and Zacks, 2019). Providing evidence for enhanced integra-
tive or associative memory, Greve et al. (2017) taught participants, 
through repeated exposures, that different scene categories predict 
either positive- or negative-valence words. Then, they violated this 
learned expectation by altering the valence of the words that followed a 
given scene. Memory for the word-scene association was higher for 
words that violated previously learned contingencies (Greve et al., 
2017). Similarly, Kafkas and Montaldi (2018) taught participants that a 
specific symbol was followed by either a man-made object or natural 
object, but then subsequently switched this contingency to violate par-
ticipants’ predictions. Recollection rates, thought to reflect participants’ 
rich, integrated memory for experienced events, were higher for objects 
that violated prior expectations (Kafkas & Montaldi, 2018). An addi-
tional study violated predictions generated by semantic knowledge by 
presenting participants with objects in highly surprising locations (e.g., 
a microwave in the kitchen sink) and also found increased recollection 
for surprising object-scene associations (Quent et al., 2022). 

In contrast, supporting the idea that prediction errors can lead to 
separated memories (i.e., disruption of the association between con-
nected experiences), other work has found that changes in context 
(termed ‘event boundaries’) — which can be said to violate expectations 
of contextual stability — impair associative memory between informa-
tion from across different contexts (Ben-Yakov et al., 2021; DuBrow and 
Davachi, 2013; Ezzyat and Davachi, 2014; Heusser et al., 2018; Rouhani 
et al., 2020). Changes in context also lead to neural separation of event 
representations (Antony et al., 2021; Baldassano et al., 2017; Bein and 
Davachi, 2022; Ben-Yakov and Henson, 2018), the strength of which 
correlates with how separated in time two events are remembered 
(Ezzyat and Davachi, 2014). These studies are consistent with the idea 
that prediction errors facilitate the creation of distinct memory traces by 
promoting neural separation. However, other work has found that 
neural and behavioral separation between memories also occurs when 
event boundaries are predictable, in that participants can anticipate 
precisely when the current event will end and the next will begin, as well 
as the content of the next event (Bein and Davachi, 2022; Clewett and 
Davachi, 2017). As such, it is unclear to what degree these effects stem 
from violated expectations per se (see Shin and DuBrow, 2021 for a 
related discussion). 

While the aforementioned studies generally examined how 
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prediction errors impact memory for the associations between elements 
of an experience (e.g., links between items across time or space), other 
work has found evidence that prediction errors can also increase the 
distinctiveness of memories for individual pieces of information. Such 
work has often used the mnemonic similarity task (MST; Stark et al., 
2019), which is typically thought of as a behavioral assay of pattern 
separation. In this task, participants encode a stream of visual items. 
Then, during a memory test, they are presented with identical items, 
visually similar lures, and novel items, and are asked to indicate whether 
each item they see is exactly the same as a previously studied item 
(‘old’), similar to an encoded item, or completely new. To discriminate 
old from similar items, participants must have access to fine-grained and 
detailed item representations, potentially reflecting that the process of 
pattern separation has taken place. In line with this interpretation, the 
successful identification of a similar item as ‘similar’ has been linked 
with increased univariate BOLD activity in hippocampal subregion DG, 
as well as with more distinct item representations in DG, as indicated by 
the successful classification of similar lure versus previously-encoded 
images using DG multivariate activity patterns (Baker et al., 2016; 
Bakker et al., 2008; Berron et al., 2016; Knierim and Neunuebel, 2016; 
Lacy et al., 2011; Leutgeb et al., 2007). 

Bein et al. (2021) used this type of MST test (i.e., requiring partici-
pants to discriminate between old/similar/new items) for items that 
either violated predictions acquired during earlier learning, or did not. 
They found that such prediction violations enhanced item memory: 
participants correctly identified more identical old items as ‘old’ when 
items violated their expectations, relative to when items did not violate 
prior predictions. However, participants did not perform better at 
identifying similar lures for violations versus expected items. While 
these findings are consistent with enhanced detail memories for viola-
tions, it does not neatly sit with a pattern separation account, which 
would have additionally predicted better discrimination between old 
items and similar lures. One alternate interpretation of these results is 
that distinct memory representations for violations might be supported 
by increased processing of perceptual information inputted from the 
entorhinal cortex to the hippocampus (Colgin, 2016; Hasselmo et al., 
1996; Hasselmo and Stern, 2014). In previous work, we have shown that 
functional connectivity between the hippocampus and entorhinal cortex 
increases during mnemonic prediction errors (Bein, Duncan, et al., 
2020). Thus, prediction errors elicited during Bein et al.’s (2021) study 
may have upregulated input from the entorhinal cortex and led to the 
construction of detailed, perceptually rich item representations, which 
enabled correct identification of an old item as ‘old.’ However, this 
perceptual input might not be sufficient to clearly distinguish a similar 
lure from a previously-seen item — a task that instead requires DG 
pattern separation. Additionally, the perirhinal cortex, an adjacent brain 
region, supports recognition memory for items (Brown and Aggleton, 
2001; Davachi, 2006; Davachi et al., 2003; Davachi and Wagner, 2002; 
Eichenbaum et al., 2007; Staresina et al., 2011; Staresina and Davachi, 
2008) and is preferentially engaged during mnemonic prediction errors 
(Chen et al., 2015). 

Adding to this complexity is the observation that prediction errors do 
not always promote memory. First, the most robust finding reported in 
studies manipulating congruency with semantic knowledge is that 
events that are consistent with our semantic knowledge are remembered 
better than inconsistent events that presumably elicit prediction errors 
(Bein et al., 2015; Bonasia et al., 2018; Craik and Tulving, 1975; van 
Kesteren, Beul et al., 2013; van Kesteren, Rijpkema et al., 2013). In 
Frank et al.’s study (2018), researchers even used a design that 
emphasized sequential predictions and included a third baseline (unre-
lated) condition, and still did not find memory enhancement for 
incongruent events. Specifically, as described previously, this study 
presented participants with sequentially ordered quartets of items that 
either all belonged to the same semantic theme (consistent), contained 
one item belonging to a different theme (inconsistent), or contained four 
items from different themes (unrelated). Generally, memory for items 

from incongruent sequences was comparable to memory for unrelated 
sequences — both of which were lower than memory for congruent 
items (see also van der Linden et al., 2017). In another study, Ortiz--
Tudela et al. (2023) taught participants scene-object contingencies, 
comparing situations where participants have acquired strong prior 
beliefs (i.e., scenes that have a high probability of being followed by an 
object from one particular object category, making them highly pre-
dicted, and low probabilities of two other categories, making objects 
from these categories unexpected) versus cases where they have a flat 
prior (i.e., scenes that are equally likely to be followed by an object from 
any one of three possible categories). Item memory was highest for 
objects associated with the flat prior, compared to the strong prior — 
both when objects belonged to the highly predicted category and when 
they belonged to a strongly unexpected category (see also Ortiz-Tudela 
et al., 2018). In a similar paradigm, Turan et al. (2023) found better 
memory for items that met predictions compared to violating them, 
consistent with a semantic congruency effect. 

Importantly, these observed memory benefits for congruent but not 
incongruent information cannot readily be explained by the use of pre- 
existing knowledge during retrieval (e.g., due to participants inferring or 
guessing an item’s associate based on semantic knowledge). In partic-
ular, researchers have found better memory for congruent over incon-
gruent information when participants performed recognition tests for 
individual items that had belonged to either congruent or incongruent 
associations at encoding, but had no congruency/incongruency status 
during retrieval (Bein et al., 2015; Bonasia et al., 2018; van Kesteren, 
Beul et al., 2013; van Kesteren, Rijpkema et al., 2013). Nevertheless, it 
could still be argued that semantic associations informed item memory 
in these studies. Other congruency studies used an associative recogni-
tion test that directly controlled for this possibility and found a similar 
congruency advantage (Amer et al., 2018, 2019; but see Quent et al., 
2022). In these studies, participants encoded grocery items presented 
with prices that were either congruent or incongruent with prior 
knowledge. At retrieval, participants had to choose the correct price out 
of two options, both with the same congruency or incongruency status; 
as such, congruency at retrieval could not explain better memory. 
Finally, in other studies, expectations were learned within the experi-
ment de novo, such that pre-existing knowledge would not be infor-
mative, and a memory advantage was found for events consistent with 
these learned predictions (Gasser and Davachi, 2023; Ortiz-Tudela et al., 
2023; Turan et al., 2023). 

The general level of unexpectedness or novelty in the environment 
might also influence the memory of unexpected events. Broadly, the 
volatility of an environment is known to influence learning and memory 
(Daw et al., 2005; Nicholas et al., 2022; Rouhani and Niv, 2021; Yu 
et al., 2021). In oddball paradigms, rare events (which presumably 
violate expectations) are typically remembered better than common, 
expected events (Hunt, 1995; Ranganath and Rainer, 2003; von Restorff, 
1933). However, this oddball memory enhancement has been found 
even if the rare event is the first item in a list, before any predictions can 
be established or violated, suggesting that other mechanisms beyond 
prediction error are at play (Hunt, 2006; Waddill & McDaniel, 1998). In 
addition, although semantically incongruent word pairs are remem-
bered better when they are rare in a learning context (e.g., when there 
are only a handful of incongruent pairs in a list of otherwise semantically 
congruent pairs), this effect of rarity is not found for congruent word 
pairs (Reggev 2018). These results suggest that unexpectedness within a 
context might benefit memory particularly for events that also violate 
semantic expectations. Relatedly, hippocampal univariate activity has 
been shown to decrease when rare events (e.g., oddballs) become more 
familiar or expected (Bunzeck and Düzel, 2006). We are unaware of 
studies examining how the rarity of events that violate our expectations, 
or the general volatility or uncertainty in one’s environment, affect the 
neural integration or separation of such violating events. Nevertheless, 
the studies surveyed here suggest intriguing avenues for further 
research. 
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Overall, the specific details that might contribute to differences in 
the transformation of memories that are inconsistent with prior 
knowledge remain to be elucidated. Based on the neural studies and 
theories surveyed here, we propose that several factors — including the 
balance between neural separation and integration, the types of pre-
diction errors elicited, the amount of uncertainty in one’s environment, 
the level of memory reactivation, and the type of memory tested — can 
be jointly considered to understand exactly when and how prediction 
errors benefit memory. 

4. Conclusion 

In order to survive and behave adaptively in a changing environ-
ment, we need to update our knowledge. This process, however, is not 
trivial. Sometimes, we might dismiss new information if we deem it as 
unimportant or inaccurate (e.g., “fake news”). In other cases, when new 
information is perceived as useful and reliable, knowledge updating is 
beneficial. In this review, we argued that our brains might flexibly use 
the integration and separation of memories to answer the different de-
mands of knowledge updating when events are consistent versus 
inconsistent with our predictions. Many exciting open questions remain, 
regarding not only how new information is learned, but also how old 
knowledge is modified or preserved, as well as how these mechanisms 
serve current and future goals. Further, while past research has focused 
on brief, individual events that are either broadly consistent or incon-
sistent with prior memories, our life events often extend across longer 
periods of time and include multiple components, each with varying 
degrees of consistency or inconsistency. Making detailed predictions 
across all of these components and predicting far into the future might 
be too costly for the brain to perform, leading it to prioritize some kinds 
of predictions over others (e.g., Brunec and Momennejad, 2022; Lee 
et al., 2021; Liberman et al., 2002; Niv, 2019; Niv et al., 2015; Trope and 
Liberman, 2003, 2010). Thus, understanding how predictions and 
memory for novel information interact in complex and temporally 
extended events is an open question. Future research could also continue 
to investigate how integration and separation contribute to the trans-
formation of memories as they undergo consolidation (Audrain and 
McAndrews, 2022; Gilboa and Moscovitch, 2021; McClelland et al., 
1995; Tompary et al., 2020; Tompary and Davachi, 2017). This work 
could promote a better understanding of the life cycle of memories and 
how they are interwoven together to promote adaptive learning and 
behavior. 
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