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While many aspects of our cognition and behavior—including lan-
guage processing, spatial navigation and episodic memory—share the 
requirement to represent, encode and retrieve temporal sequences of 
events, how the brain accomplishes this is still not well understood. 
It has been known for decades that stimuli that activate intercon-
nected neurons can result in long-term potentiation (LTP) of the 
bridging synapse1, thus supporting an association between the two, 
and compelling new research has provided causal evidence for a 
link between LTP and associative memory formation2. However, the 
model of LTP in its current form is not viable for stimuli (or neurons) 
whose activation is separated by more than ~300 ms, and much of 
what we encode and remember is separated by temporal gaps at least 
an order of magnitude larger than this. Thus a central, unresolved  
issue is how the brain can bridge and relate stimuli encountered across 
seconds or minutes.

To deal with this conundrum, mechanistic models of sequence 
encoding posit that temporal coding of sequences can be supported 
by neural oscillations3–7, or rhythmic fluctuations in neuronal excit-
ability8. One influential model of sequence encoding3,5 hypothesizes 
that individual items represented by largely non-overlapping neu-
ral cell assemblies, when activated, fire in higher frequency bands 
(gamma, >30 Hz), while the sequential order of those items is encoded 
in a temporally segregated manner along the phase of an underlying 
slower rhythm (theta, ~3–8 Hz). This ‘phase coding’ model posits 
that during sequence encoding, the current item is represented and 
encoded by transient higher frequency activity, while the relative posi-
tion of each item in a sequence may be encoded by the relative phase 
of a lower frequency oscillation. Theoretically, phase coding allows 
the temporal segregation of activity supporting individual items that 
are encountered at different times across an experience and, critically, 
may also permit temporally extended experiences to be represented 
in a time-compressed manner6.

There is ample evidence that modulation of gamma power by 
theta phase (phase–amplitude coupling, or PAC) is important for 
learning and memory9–13. However, there is little evidence that 
theta phase coding is a mechanism underlying temporal aspects 
of human memory formation. We set out to test this fundamental 
question by presenting participants with six-item sequences, each 
consisting of pictures of trial-unique objects that were embedded 
on a repeating background colored frame (Fig. 1a) while record-
ing brain activity using magnetoencephalography (MEG). We later 
tested participants’ ability to recover temporal details of the presented 
sequence from memory. Thus, we could ask whether gamma power 
associated with each item in a sequence (positions 1–6) was biased 
toward distinct phases of theta and whether theta phase coding was 
behaviorally relevant by examining it during both successful and  
unsuccessful temporal order encoding.

RESULTS
Sequence memory performance
During each encoding–retrieval block, participants encoded six  
6-item sequences (for a total of 36 consecutive object stimuli) before 
being tested for the temporal order of pairs of object stimuli from each 
presented sequence. Behaviorally, temporal order memory for pairs 
of object stimuli studied within a sequence was well above chance 
(mean = 0.74, s.d. = 0.12, where chance would be 0.5) but still in a 
range that allowed us to compare successful to unsuccessful encod-
ing of sequences.

Theta and gamma power and coupling during sequence encoding
Before testing the critical hypotheses (whether theta–gamma interac-
tions are related to successful sequence memory formation), we first 
characterized the distribution of spectral power in the MEG data in a 
broad range of frequency bands (1–100 Hz) during stimulus encoding 
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The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the  
order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and 
low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher 
frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation 
(theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions 
exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful 
temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, 
capitalizes on the ubiquitous physiological mechanism of theta–gamma phase–amplitude coupling. 
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(0 to 2.5 s), averaging power over time, trials, sensors and subjects. 
This provided a global measure of the frequency content of the sig-
nal and allowed identification of reliable peaks in the power spectra, 
since spectral peaks are necessary for a meaningful estimate of phase 
and ultimately for a reliable estimate of cross-frequency coupling14.  
We found distinct peaks in both the theta (3–8 Hz) and high gamma 
(70–100 Hz) bands during each trial presentation compared to a base-
line period (Supplementary Fig. 1). Using these spectral power peaks 
to constrain frequencies of interest, we tested whether any reliable 
relationship between theta and gamma oscillations were present in our 
data (Online Methods). We identified significant theta–gamma PAC 
in a number of MEG sensors distributed across the scalp (one-sample 
t-test, thresholded at t > 3.96, P < 0.001; Supplementary Fig. 2).

Modulation of theta–gamma coupling by sequence position
Next we asked whether theta–gamma PAC was modulated by 
sequence position. If items are temporally coded by gamma power 
biased toward distinct phases of theta, theta–gamma PAC may be 
parametrically modulated as a function of an item’s position within 

a sequence. We hypothesized that an item in the initial part of the 
sequence should be associated with a tight theta phase–gamma 
amplitude relationship, because a single item would be repre-
sented at a singular phase on repeating cycles of theta4,6. However,  
as subsequent items were encoded, the addition of gamma cycles 
(representing additional items) would result in the widening of the 
distribution of gamma power over the phase of theta (Fig. 1b), which 
would produce an overall reduction in our measure of theta–gamma 
coupling as more items are added into the sequence. To quantify 
this hypothesis, we ran a simulation in which, for each trial, addi-
tional gamma cycles (representing additional items in the sequence) 
were concatenated along the phase of a theta oscillation. PAC was 
then estimated based on the simulated data. This verified our intui-
tion that if our hypothesis is correct, our PAC measure should lin-
early decrease across trials when estimated separately for each trial  
within a sequence (Fig. 1c).

Based on the results of the simulation, we examined the MEG data 
for this pattern of decreasing theta–gamma PAC across each six-item 
sequence. Using the pattern estimated by our simulated hypothesis as 
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Figure 1 Theta–gamma model fitting analysis. (a) Schematic of the model. Participants viewed a series of trial-unique objects (36 per block) embedded in 
a colored frame which changed color every six trials. After each block, temporal order memory was probed by presenting two items studied within the same 
color and asking which of the two occurred earlier in the sequence. (b) Model of theta–gamma phase coding hypothesis: items (represented in gamma) 
encountered in the same color are concatenated along a theta phase. At switches in color, item representations are hypothesized to be removed. (c) Expected 
pattern of theta–gamma coupling measure (MI: modulation index) across sequence positions derived from the simulated hypothesis. (d) Group-level 
topographic statistical map (n = 17 participants, thresholded at t16 > 2.1, P < 0.05, cluster corrected using bootstrapping procedure described in Online 
Methods) representing fit of model to cross-trial theta–gamma coupling estimates. Two significant clusters of sensors emerged (P < 0.05, cluster corrected 
using permutation procedure): a left lateralized cluster and a left posterior cluster. (e) Group-level source-space statistical map (t-values) representing fit of 
model to cross-trial theta–gamma coupling estimates. Coronal (left), axial (middle) and sagittal (right) views are shown (n = 17 participants; source space 
statistical map is thresholded at t16 > 3.22, P < 0.005; uncorrected). PHG, parahippocampal gyrus; FG, fusiform gyrus.
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a predictor variable (Fig. 1c), we performed a linear regression on the 
actual PAC estimates to identify sensors that displayed the predicted 
pattern of results. This analysis identified two clusters of sensors (left 
lateral and posterior) that reliably fit our model at the group level 
(Fig. 1d; one-sample t-test thresholded at t16 > 2.1, P < 0.05; cluster-
corrected using the permutation test procedure described in Online 
Methods). To verify that this result was driven by our expected pat-
tern, we extracted PAC estimates from sensors showing a significant 
fit to our model (P < 0.05, cluster corrected using our permutation 
procedure). Visual inspection confirmed a linearly decreasing PAC 
across the sequence, consistent with the simulation (Supplementary 
Fig. 3). Furthermore, regressing out the power values (both theta and 
gamma) had virtually no effect on the PAC model fits (Supplementary 
Fig. 4; two-way ANOVA with repeated measures: F1, 5,332 = 0.002,  
P = 0.96) and thus did not interact with the PAC effects. In sum-
mary, we found that theta–gamma PAC decreased across items in a 
sequence, consistent with the idea that sequence encoding may be 
supported by the concatenation of gamma cycles at distinct, consecu-
tive phases of theta for each additional item in the sequence.

Source localization of theta–gamma coupling effects
Theoretical models4,15 and empirical research in humans16–21 and 
rodents22,23 all point toward the hippocampus as being a critical 
structure for the formation of temporal associations among items. 
In humans, functional MRI and intracranial electroencephalography 
recordings with spatial resolutions on the order of millimeters have 

allowed the precise characterization of hippocampal signals. While 
MEG is well suited for fine temporal analysis of brain activity, recent 
advances in source localization methods have made it possible to 
localize sources of MEG activity to a spatial resolution on the order 
of single centimeters, or even millimeters24. Additionally, a growing  
number of studies25–27 and simulation studies28,29 argue that source 
localization of MEG signals is possible to subcortical structures such 
as the hippocampus. However, the parameters required for accurate  
source localization are still actively debated in the literature. 
Nonetheless, we applied a well-established source localization tech-
nique, the linearly constrained minimum variance beamformer 
approach (Online Methods), to estimate trial-level time series in 
source space. We then computed PAC estimates for each trial and 
each source-space point (whole brain) and fit the trial-wise PAC esti-
mates to the model generated by our simulation (i.e., decreasing PAC 
estimates across a six-item sequence). This analysis was identical to 
the sensor-level analysis (Fig. 1d), but was performed on source-
space time series estimates throughout the whole brain. Notably,  
the only region to reliably emerge from this analysis was a region cen-
tered in the left hippocampus (Fig. 1e, one-sample t-test thresholded 
at t > 3.19, P < 0.005; Supplementary Fig. 5) and extending posteri-
orly to a region of the parahippocampal and fusiform gyri. This is con-
sistent with the suspected role of the hippocampus and surrounding 
medial temporal lobe cortical regions in sequence encoding20,30 and 
with the idea that sequence memory may be supported by an interac-
tion between theta and gamma activity in the left hippocampus.
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Figure 2 Phase analysis of theta–gamma coupling during sequence encoding, plotted by position and subsequent temporal order memory for left 
posterior cluster of sensors. (a) Theta-binned gamma distributions during successful sequence encoding. Each color represents a distinct sequence 
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Theta phase coding supports temporal sequence encoding
While the sensor-level and source-space analyses described thus far 
establish that theta–gamma PAC is modulated by sequential position 
in a manner consistent with a theta–gamma phase code, they do not 
directly demonstrate that result. Indeed, one could imagine alterna-
tive scenarios in which the decreasing theta–gamma PAC pattern 
across sequence positions could emerge; for example, the response 
pattern could represent accumulating item representations without 
the explicit representation of their temporal order.

We conducted analyses to directly test our central hypothesis that 
objects encountered in different positions within a sequence are 
encoded at distinct and consecutive phases of theta. To that end, we 
extracted raw MEG data from the two clusters of sensors that dis-
played a significant fit to the model (P < 0.05, cluster corrected using 
permutation procedure) derived from our simulated data (Fig. 1d). 
Separately for these two clusters of sensors, we binned gamma power by 
the phase of theta (18 phase bins) to generate an individual histogram 
for each trial (Online Methods). We then averaged the theta-binned 
gamma distributions for each cluster across all subjects separately  
for each position and by subsequent temporal order memory.

Examining successfully encoded sequences first, in the left pos-
terior cluster of sensors we found a main effect of position on the 
distribution of gamma power over theta phase (Watson–Williams test, 
F5,96 = 16.04, P = 1.81 × 10−11) and, critically, the gamma power distri-
butions reflected the relative order in which the objects were encoded 
(Fig. 2a and Supplementary Fig. 6). By contrast, for sequences in 
which order memory was later incorrect, we observed significant 
differences in mean phase angle by position (Watson–Williams test,  
F5,96 = 5.26, P = 1.35 × 10−4), but the order of the phase angles was 
scrambled relative to the actual order in which the items were expe-
rienced (Fig. 2b). Critically, the memory by position interaction 
was also significant (Harrison–Kanji test, F5,196 = 15.79, P = 0.01). 
Together, these results suggest that objects in distinct ordinal posi-
tions within a sequence may be encoded in gamma band activity 
biased toward distinct, ordered phases of a theta oscillation.

Another way to visualize this effect is to plot the phase biases 
in polar coordinates. Therefore, we transformed the theta-binned 
gamma distributions into polar coordinates (after removing the main 
effect of coupling across positions). We found that, for successfully 
encoded sequences, the order of the angles across positions mirrored 
the order in which the objects were encoded (Fig. 2c), whereas for 
incorrect sequences, the order of the angles was scrambled relative to 
the actual encoding order (Fig. 2d).

We next averaged the theta-binned gamma distributions for the 
six-sequence positions into three bins (1&2, 3&4 and 5&6) after sub-
tracting out the main effect of coupling. A statistical contrast of each 
position bin relative to the average of the other two bins showed that 
gamma power was preferentially higher at distinct phase bins of theta 
(Fig. 3b; paired-samples t-tests; early > middle and late time bins, t1: 
t16 = 2.38, P = 0.01 and t2: t16 = 3.00, P = 0.004; middle > early and late 
time bins, t1: t16 = 3.04, P = 0.004 and t2: t16 = 2.16, P = 0.023; late > 
early and middle time bins, t1: t16 = 2.58, P = 0.01 and t2: t16 = 4.28,  
P = 0.0003). However, for sequences in which the temporal order 
was later incorrectly remembered, the relative distributions for each 
position bin were not different from one another (Fig. 3c; t > 2.1,  
P < 0.05). Together, these data strongly support the idea that suc-
cessful sequence encoding is accompanied by a theta–gamma phase 
coding mechanism, whereby gamma power associated with each 
sequential item is biased toward a distinct, consecutive phase of an 
underlying theta oscillation.

Ruling out alternative explanations
While the results reported here are consistent with a theta phase cod-
ing account of sequence memory formation, we wanted to rule out 
alternative explanations for the data. Below, we outline a number of 
control analyses used to test whether other features of the data could 
explain the effects.

Temporal dynamics of gamma power and theta phase locking. We 
considered the possibility that variance in gamma power or theta phase 
locking across sequence positions or memory conditions could explain 
the phase coding effects. To test this, we analyzed the time course of 
gamma power and theta phase locking separately by sequence position 
(binned as 1&2, 3&4 and 5&6) and by subsequent memory in the left 
posterior cluster of interest that displayed phase coding. Transient 
stimulus-evoked gamma power and theta phase-locking stabilized by 
500 ms after stimulus onset (Supplementary Figs. 7 and 8). There were 
no differences in theta phase locking by position (one-way ANOVA 
with repeated measures; 0–500 ms: F2,34 = 0.78, P = 0.46; 500–2,500 
ms: F2,34 = 0.5, P = 0.61) and no differences by subsequent memory 
(two-way ANOVA with repeated measures; 0–500 ms: F1,34 = 1.17,  
P = 0.29; 500–2,500 ms: F1,34 = 0.04, P = 0.96). Gamma power also did 
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Figure 3 Relative biases in gamma power over theta phase by sequence 
position and subsequent memory. (a) Schematic representing our binning 
strategy: we grouped trials into early (1&2), middle (3&4) and late (5&6) 
bins. (b) The distribution of gamma power over theta phase after removing 
the main effect of coupling for each sequence bin when temporal order 
was correct (paired-samples t-test, n = 17 participants; early > middle 
and late time bins: t1: t16 = 2.38, P = 0.01, t2: t16 = 3.00, P = 0.004; 
middle > early and late time bins: t1: t16 = 3.04, P = 0.004, t2: t16 = 2.16,  
P = 0.023; late > early and middle time bins: t1: t16 = 2.58, P = 0.01, 
t2: t16 = 4.28, P = 0.0003; t1= first significant time bin; t2= second 
significant time bin). (c) As in b, but for sequences in which order was 
incorrect. *P < 0.05. Shading indicates s.e.m.
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not significantly vary by sequence position (one-way ANOVA with 
repeated measures; 0–500 ms: F2,34 = 0.24, P = 0.78; 500–2,500 ms: 
F2,34 = 0.13, P = 0.87) and there was a trend for greater gamma power 
in the forgotten sequences compared to the remembered sequences 
early (0–500 ms) but not later (500–2,500 ms; two-way ANOVA with 
repeated measures; 0–500 ms: F1,34 = 3.12, P = 0.09; 500–2,500 ms: 
F1,34 = 0.95, P = 0.34). Absolute gamma power likely did not play a role 
in the phase coding effects we see here, because for each trial, after 
computing the distribution of gamma power over theta phase, the 
resulting distribution was normalized (to sum to 1). This minimized 
the likelihood that the phase coding effects were somehow driven by 
gamma power differences across conditions.

Removing the stimulus-evoked response. One major concern 
when performing cross-frequency coupling analyses is that the neu-
ral response to the presentation of a stimulus could simultaneously 
result in a burst of high-frequency activity and low-frequency phase 
alignment over trials. Thus an effect that looks like a phase-ampli-
tude interaction may actually be driven by two independent processes 
with a common driver. It is worth noting that to fully account for our 
results, a burst of high-frequency activity at stimulus onset would 
need to (i) also be accompanied by a systematic forward shift in theta 
phase over the sequence of items and (ii) only do so on successfully 
encoded sequences. Nonetheless, to rule out the possibility that our 
effects were in some way driven by an evoked stimulus response,  
we reanalyzed the data without the time window (first 500 ms), con-
taining the evoked potential.

We found that both the decreasing PAC over sequence positions 
(Supplementary Fig. 9; one-sample t-test; including first 500 ms: t16 =  
6.99, P = 3.07 × 10−6; excluding first 500 ms: t16 = 6.10, P = 1.53 × 
10−5), as well as the phase coding by subsequent order memory effects 
(Supplementary Fig. 10; excluding first 500 ms, temporal order cor-
rect: Watson–William’s test: F5,96 = 9.10, P = 1.05 × 10−5; temporal 
order incorrect: Watson–William’s test: F5,96 = 6.42, P = 0.025; memory 
by sequence position interaction: Harrison–Kanji test: F5,196 = 11.03,  
P = 0.025) were still present and statistically robust.

Phase coding in the intertrial interval. As a further test to rule out 
an evoked response confound, we ran the same analyses on the time 
periods between each trial, the intertrial intervals (ITI; 2,500–5,000 ms 
after stimulus onset), when participants were presumably maintaining 
prior items and reinforcing associations between items. We found that 
theta–gamma PAC was in fact stronger during the ITI than the stimulus 
presentation interval (Supplementary Fig. 11a) and the phase coding 
by subsequent memory effects were still present and robust (temporal 
order correct, Watson–William’s test: F5,96 = 9.10, P = 1.07 × 10−5; tem-
poral order incorrect, Watson–William’s test F5,96 = 9.09, P = 4.03 × 10−4;  
position–memory interaction, Harrison–Kanji test: F5,196 = 8.02,  
P = 0.07). However, the decreasing PAC by sequence position effect was 
no longer present (Supplementary Fig. 11b). This result suggests that 
phase coding persisted even after the stimulus was removed from the 
screen, thus ruling out the possibility that the evoked response was in 
some way responsible for the phase coding pattern we observed.

Theta phase shift and phase symmetry controls. Finally, we exam-
ined whether systematic shifts in theta phase by sequence position or 
systematic changes in theta phase symmetry may have contributed 
to our findings. The results did not reveal any evidence for a sys-
tematic theta phase shift across sequences (one-way ANOVA with 
repeated measures; F4,84 = 0.33, P ≥ 0.85; Supplementary Fig. 12), 
and theta waveforms were equally symmetric over sequence positions 

(Watson–Williams test; F5,101 = 0.23, P = 0.94) but varied in power, 
as evidenced by the increasing area of the polar phase distributions 
by sequence position (Supplementary Fig. 13).

DISCUSSION
Temporal coding models31 converge on the idea that the brain may 
utilize the precise timing of neuronal firing to encode information. 
Theta phase coding models3,4,6,32,33 specifically predict that the order 
in which a sequence of events occurred in the external world may be 
represented internally in the brain by the timing of neural ensem-
ble firing (in the gamma frequency) with respect to the phase of an 
underlying theta wave. Our results provide compelling evidence in 
humans that a peak in gamma power for each successive item shifts 
along the phase of an underlying theta rhythm during successful, but 
not unsuccessful, sequence encoding. These findings suggest that by 
associating the ordinal position of a gamma-coded item representa-
tion with a particular theta phase, the brain may preserve the order 
in which a sequence occurred.

We assessed whether gamma power during the encoding of items in 
distinct sequence positions was preferentially biased toward distinct 
and consecutive phases of theta. Critically, our experimental design 
allowed us to separately examine whether phase coding was evident 
during both successful and unsuccessful temporal order encoding. 
First, we found a strong main effect of gamma power over theta phase 
for all six sequence positions (Fig. 2a). Second, in line with our pri-
mary predictions, we found that gamma power shifted progressively 
later in the theta cycle for each item in the sequence and that the rela-
tive gamma power peaks reflected the order in which the items were 
encountered (Figs. 2 and 3). Notably, this ordinal phase coding effect 
was only present during the encoding of sequences later remembered 
correctly. This effect’s specificity to successfully encoded sequences 
provides strong support for the notion that the brain codes recent 
elements in memory by leveraging relative phase differences among 
distinct items in a sequence. Its specificity to remembered sequences 
also helps to rule out concerns that the effects are somehow derivative 
only of the visual and task structure, as the timing of stimulus onset 
and motor responses is identical within sequences later remembered 
or forgotten. Further, the memory-related phase coding effects were 
present after removing the early stimulus-evoked activity (< 500 ms),  
and notably, even persisted into the ITI when the stimulus was no 
longer on the screen. These results provide strong evidence for 
the longstanding theory that theta–gamma phase coding supports  
temporal sequence memory.

In our initial set of analyses, we found that theta–gamma PAC 
was modulated by the position of the object within a sequence. 
Specifically, using a computational model-driven linear regres-
sion approach (Online Methods), we found that theta–gamma PAC 
decreased over items in a sequence in left lateralized and left posterior 
MEG clusters (Fig. 1d). While perhaps counterintuitive, this pattern 
of decreasing PAC was predicted by a computational simulation of 
the theta–gamma hypothesis (Fig. 1c) and was due to a broadening 
of the gamma distribution over a theta cycle (Fig. 2). One remaining 
question concerns the nature of the mechanism driving the model 
fits in our initial set of analyses (Fig. 1d). One possibility is that the 
broadening of gamma power across sequential positions results from 
the accrual and maintenance of all prior items within a sequence, 
each nested in a distinct phase of an underlying theta oscillation, 
similar to the model proposed by Lisman and Idiart3 and formalized 
in our computational simulation (Fig. 1b,c). It would then follow 
that the representation of additional items would result in a broader  
distribution of gamma power over a theta cycle.
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A second possibility, however, is that the effect is driven by a pro-
gressive shift in gamma power along the phase of theta while items 
are being encoded (in the absence of gamma broadening related to the 
accrual of item representations). On its own, this pattern would not 
modulate theta–gamma coupling as we measured it. This is because 
the measure of coupling we utilized is sensitive to the width of the 
gamma distribution over theta, and a mere shift in gamma power 
would not modulate the width of the distribution. However, a forward 
shift in gamma power by sequence position in conjunction with the 
strong main effect of coupling we observed in the data could, in fact, 
account for the pattern of decreasing PAC by sequence position that 
we observed. For instance, if items in early sequence positions were 
preferentially locked to the trough of theta (i.e., where gamma power 
is highest for all sequence positions in our data), this pattern would 
result in an exaggerated measure of theta–gamma coupling for early 
positions. If items later in a sequence were preferentially coded at the 
theta power peak (i.e., where gamma is lowest for all sequence posi-
tions), this would result in an attenuated measure of theta gamma 
coupling. While this is a subtle but very important point, our initial 
analyses are actually agnostic to the relative likelihood of either of 
these two possibilities.

Our data are more consistent with the latter model, in which a 
position-related forward shift in gamma power along the phase of 
theta supports sequence memory encoding in the absence of accruing 
gamma-coded item representations. There are two major data points 
that led us to this conclusion. First, if additional items are added into 
the sequence representation, one might expect overall measures of 
gamma power to increase across the sequence as well. Contrary to 
this expectation, gamma power was relatively flat across the sequence 
(Supplementary Fig. 3). Second, one might also expect that the 
width of the gamma power distribution over theta should broaden as  
a function of sequence position (as more item representations are 
accrued and maintained). Contrary to this hypothesis, we did not see 
evidence that the width (standard deviation, s.d.) of the distribution 
increased across sequence positions (one-way ANOVA with repeated 
measures; F1,15 = 0.20, P = 0.64). Thus, the best explanation for our 
results is that sequence encoding is supported by a temporal shift-
ing of gamma power (representing each item) along the phase of an 
underlying theta oscillation.

With this conclusion in mind, to examine gamma power associated 
with each sequential position, we examined a time window coinci-
dent with each item presentation: the time period during which that 
stimulus was presented, as well as the immediately following ITI. In its 
original conception, the Lisman and Idiart model offered a proposed 
mechanism to support the maintenance of multi-item sequences in 
working memory after items had been encountered and were presum-
ably being actively maintained. If gamma power associated with each 
item representation in a sequence is ordered along an underlying 
theta wave, then we should be able to measure this effect while these 
items are being encoded. Thus, our current results do not preclude 
the possibility that in working memory, theta-locked gamma power 
representing each item might be replayed in order, which would lead 
to a broader distribution of gamma power over theta phase with an 
increasing number of items represented in working memory.

Furthermore, the maintenance of multiple items is likely to be 
dependent on the task and specifically on whether items are being 
‘actively’ retained in working memory. Our task was not necessarily 
an ‘active’ working memory task in the sense that participants were 
not required to rehearse and maintain the sequence of items during 
a delay period as in classical working memory paradigms. Rather, 
participants were instructed to remember the temporal order of the 

sequence by forming associative links between neighboring items, 
which likely involves some working memory maintenance along with 
other associative encoding operations. Thus, our current results are 
agnostic as to whether one would see the continued maintenance of 
phase coding effects during working memory rehearsal and are not 
necessarily in conflict with the Lisman and Idiart model; they may 
in fact be parsimonious. Future studies could investigate whether 
there is a relationship between theta–gamma phase coding during 
sequence memory encoding and the theta–gamma activity that has 
been observed during working memory maintenance9.

The gamma power effects we report here peak between ~70 and  
100 Hz. Notably, recent work using simultaneous MEG and intracra-
nial electroencephalography suggests that gamma power < 100 Hz is 
reliably detectable34. Recent work in rodents suggests that there is a 
functional distinction between high (~60–100 Hz) and low (25–55 Hz)  
gamma in the hippocampal circuit, such that lower-frequency 
theta-locked gamma ‘sweeps’ may represent the future spatiotem-
poral trajectory of the animal, while fast theta-locked gamma may 
support the coding of ongoing trajectories in real time35. Possibly 
related to this dissociation, in our study, in which subjects encoded 
trial-unique sequences (i.e., sequences did not repeat and thus 
could not be predicted), we observed memory-related phase coding 
effects in high gamma. Future work could test whether theta phase– 
low-gamma power interactions emerge with repeated sequences,  
possibly indexing the forward prediction of upcoming items. While 
our experimental design, as well as the signals that we recorded, were 
admittedly very different than the rodent study discussed above, we 
nonetheless consider the parallels between the two data sets to be 
worth investigating.

While gamma power was relatively stable over positions, we found 
an increase in theta power across the sequence, consistent with prior 
studies showing theta power increases during memory encoding36,37 
and working memory maintenance38–42. One study observed theta 
power increases specifically during working memory maintenance 
of temporal order information compared to maintenance of just the 
items themselves38. It is possible that theta power increases reflect 
control processes related to relational encoding27,36,38. Consistent 
with this idea, we found that sustained theta power increases occurred 
predominantly over frontal regions (Supplementary Fig. 1), possi-
bly reflecting prefrontal control processes involved in representing  
temporal relations among items43.

There is a rapidly growing literature linking theta–gamma coupling 
to human memory9,11,13,44. These studies all converge on the idea that 
theta–gamma phase-amplitude coupling plays a role in the main-
tenance of mnemonic information, as well as long-term retention. 
While these prior studies have been critical to advancing our under-
standing of the temporal dynamics of episodic memory formation, the 
fundamental and important question of whether theta phase coding 
supports sequence encoding has not been tested. To our knowledge, 
our data provide the first empirical evidence in humans that memory 
for event sequences is supported by the precise timing of item-related 
gamma activity with respect to an underlying theta oscillation.

Prior work in rodents leveraged the spatial specificity of place 
cells45 to show that sequences of hippocampal place cells represent-
ing a movement trajectory not only fire during an experience but also 
later ‘replay’ in a similar order on subsequent cycles of a theta oscilla-
tion46–48. Our results, by analogy, demonstrate that the encoding of 
an episodic ‘object trajectory’ or temporal sequence of items is also 
supported by a theta phase code. Given these two sets of findings, it is 
possible that the sequential coding of information along the phase of 
a theta oscillation represents an all-purpose mechanism in the brain 
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that allows temporally separated information to be associated via 
long-term potentiation. Our results fill a gap in the literature by pro-
viding empirical evidence from a well-controlled and characterized 
behavioral paradigm in humans that theta–gamma PAC and more 
specifically, theta phase coding, support object sequence memory.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version  
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Subjects. Twenty healthy, right-handed native English speakers (4 males, ages 
21–35, mean age: 28) recruited from New York University and the greater New 
York metropolitan area participated in the MEG experiment. The study was 
approved by the University Committee on Activities Involving Human Subjects 
and all participants gave informed written consent. We excluded two subjects 
whose performance on the order memory test was not statistically different from 
chance (50%, using binomial test) and one subject who did not complete the 
study due to drowsiness, leaving 17 subjects for the MEG analyses. No statistical 
methods were used to predetermine sample sizes, but our sample sizes are similar 
to those reported in a previous study49.

experimental procedures. Materials. Stimuli consisted of 576 grayscale pictures 
of objects collected from various online sources. Some examples of stimuli can 
be seen in the main text (Fig. 1). Colored borders for the objects were generated 
by selecting 24 unique colors from a color continuum ranging from [0,0,0] to 
[255,255,255] RGB values. Colors were manually chosen to be maximally distinct 
from each other. Color backgrounds were pseudorandomized and stimulus order 
was randomized across subjects.

design and procedure. Encoding. During encoding, participants made pleasant-
ness decisions on trial-unique objects that were paired with a colored background 
frame. Specifically, participants were instructed to imagine each object in the 
color of the background frame and press a button to indicate whether or not the 
combination was pleasant. We chose to use this encoding task to encourage par-
ticipants to associate the color and object, since attention to the context (i.e. color) 
was critical to our hypothesis. To promote successful temporal order memory, we 
additionally instructed participants to associate neighboring objects together by 
imagining them interacting with each other. Subjects were instructed to perform 
this task irrespective of the color changes between some of the items. Pilot data 
indicated that this instructional manipulation was critical to achieving above 
chance temporal order memory performance in a majority of our participants.

During the encoding task, the background color frame remained the same for 
six consecutive trials (i.e., a ‘sequence’) and then switched to a new color. There 
were six sequences (totaling 36 objects) in each encoding block and 16 encoding- 
test blocks across the experiment. Each object was on the screen for 2.5 s, followed 
by a 2 s intertrial interval (ITI) and a 0.5 s fixation period. The timing of the task 
was fixed (i.e., not jittered). During the ITI and fixation period, the color frame 
remained on the screen.

Temporal order memory test. After each study block, we tested temporal order 
memory. We used this temporal order test as a proxy for probing intact sequence 
memory. In this test, two previously studied objects were presented side by side 
(with the previously colored background frame now gray). Participants were 
asked to indicate which of the two objects appeared first (earlier) in the sequence 
and rate their confidence using a four-alternative forced-choice design. Thus, 
there were four possible responses during the test: high confidence correct order, 
low confidence correct order, high confidence incorrect order and low confidence 
incorrect order. The tested objects always occurred in the 2nd and 6th positions 
within a sequence, and all tested object pairs were separated by three intervening 
trials during encoding. The test was self-paced with a mandatory 0.5 s fixation 
period between each test trial.

MEG recordings and data processing. MEG data were recorded using a 157-
channel whole-head axial gradiometer system (KIT, Kanazawa, Japan). Three 
reference channels seated above the MEG system were also recorded and used to 
remove ambient electromagnetic environmental noise from the data. MEG data 
were acquired in DC with a sampling rate of 1,000 Hz, a low-pass filter at 200 Hz 
and a notch filter at 60 Hz to remove line noise. To measure head position, five 
electromagnetic coils were attached to the participant’s head during recording. 
Coil locations were determined by registering scalp coil positions with 3D digi-
tized head shape data (software: Source Signal Imaging, Inc.; hardware: Polhemus, 
Inc.), which was collected before MEG recording. The anatomical locations used 
to register the coils with the head shape data were the nasion and the left and 
right periauricular points. The coils were localized to the MEG sensors at the 
beginning and end of the experiment.

MEG data were preprocessed as follows: raw MEG data were loaded into 
Matlab (version 7.10, Mathworks) and any malfunctioning channel (average per 
subject: ~2) was immediately removed and interpolated with the average of its 

nearest neighbors. Data were denoised using a time-shifted principal compo-
nents analysis approach (temporal shift parameter = 100 ms), which removed 
ambient environmental noise using three reference channels50. The remaining 
preprocessing steps used the Fieldtrip MEG and EEG software package51 and 
custom Matlab scripts. The data were band-pass filtered (default settings in  
eegfilt.m) from 1–100 Hz. The data were epoched from −4 to 4 s surrounding trial 
onset to assure adequate time for spectral estimation of activity both before and 
after the stimulus. The epochs were downsampled to 500 Hz to speed processing 
time in later steps. Finally, to facilitate interpretation of topographic plots, we 
transformed the MEG data from axial to planar gradient. One advantage of this 
linear transformation is that planar signal amplitude is typically largest directly 
above the source, whereas axial signal amplitudes are typically maximal on either 
side of the neural source of the signal. This transformation was performed for all 
topographic analyses but not for the source-space analyses.

After preprocessing, the MEG data were examined for artifacts. The artifact 
rejection approach we took was threefold. First, excessively noisy trials and chan-
nels were removed using Fieldtrip’s visual artifact rejection ‘trial summary’ feature.  
Specifically, channels and trials for which the cross-trial variance exceeded 3 s.d. 
from the mean were identified and removed from the analysis. Second, inde-
pendent component analysis was implemented to remove components related 
to eye blinks, eye movements, and heartbeat-related artifacts. Third, remaining 
trials were visually inspected and epochs containing any remaining artifacts were 
removed from the data set. The group average proportion of trials removed due 
to artifacts was ~8.6%. Data collection and analysis were blind to the conditions 
of the experiment.

Statistics. All statistical tests are two-sided unless otherwise noted. Data dis-
tributions were assumed to be normal, but this was not formally tested. Details 
for the specific statistical analyses can be found in the subsections below.  
A Supplementary methods checklist is available.

Time–frequency power analyses. A time–frequency analysis was performed for 
each epoch (−4 to 4 s, 50 ms sliding window, zero-padded) using a Morlet wavelet 
approach (number of cycles = 6), estimating spectral power from 1 to 100 Hz in 
steps of 1 Hz. This analysis resulted in time–frequency spectrograms representing 
oscillatory power for each time–frequency sensor point for each trial and each 
subject. This relatively long epoch window allowed us to analyze data during the 
‘stimulus on’ period (0 to 2.5 s) as well as the intertrial periods (−2.5 to 0 s) while 
avoiding edge artifacts particularly in the low frequencies.

cross-frequency coupling analyses. Phase–amplitude cross-frequency coupling 
(PAC) was estimated as follows for each trial for each sensor and subject. The 
algorithm to compute the PAC ‘modulation index’ (referred to as MI or coupling 
values or estimates) was taken from ref. 52. First, to compute gamma amplitude, 
the raw MEG time-series (for each trial and sensor) was filtered from 70–100 Hz,  
determined by frequencies that showed a peak in the spectral power distribu-
tion (Supplementary Fig. 1). The envelope was then computed by taking the 
absolute value of the Hilbert transform of the filtered time-series. To compute 
theta phase, the raw data was filtered from 3 to 8 Hz in steps of 1 Hz resulting in 
five filtered time series (i.e., 3–4, 4–5, etc.). We filtered in steps of 1 Hz instead 
of the range of the band (3–8 Hz) because we wanted to minimize the possibility 
that changes in the peak frequency of the theta band could explain our findings. 
Phase was computed for each of the five filtered time series by taking the angle 
of the Hilbert transform of the filtered signal. Then we binned gamma power 
by theta phase (18 bins) during stimulus presentation (0–2.5 s), now averaging 
across the five theta sub bins, resulting in a single theta-binned gamma histogram 
for each trial. We then normalized the distributions, such that the power of each 
histogram summed to one. Finally, we computed Kullback–Leibler divergence 
for each theta-binned gamma distribution and divided the result by log(18), i.e., 
the number of phase bins.

In order to determine statistical significance of the coupling values, we 
employed a phase scrambling permutation procedure as outlined in44. For 
each trial, we recomputed the coupling analysis described above, but circularly 
shifted the time series of phase values by a random interval greater than 500 
samples (i.e., the sampling rate, 1 s). For each trial (and theta phase sub-bin), 
we repeated this phase-shifting process 100 times to derive a null distribution of 
coupling values. We then converted the coupling estimates to statistical values  
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(z-statistics). To calculate within-subject statistics, we computed a t-statistic 
across trials (averaging across theta sub-bin, i.e., one value per trial) for each 
sensor and subject. To calculate group-level statistics, we then computed a  
t-statistic across subjects for each sensor.

Fitting theta–gamma coupling estimates to the model. Our initial hypothesis 
was that as items are maintained in and integrated into working memory, addi-
tional gamma cycles would be concatenated along the phase of theta5. To simulate 
this hypothesis and test for this pattern in our data, we generated theta (4 Hz) 
sinusoidal waves (10 cycles to mimic our 2.5 s stimulus presentation), adding  
1 to 6 cycles of a gamma rhythm (85 Hz) per theta cycle. The six different simula-
tions represented our hypotheses for the six positions within a sequence. We then 
computed the predicted coupling score (i.e., modulation index) for each of these 
simulations. Due to an increase in the width of the distribution of gamma over 
theta as function of sequence trial position, our simulation predicted linearly 
decreasing coupling values across sequence positions (Fig. 1b,c).

To test for this pattern of broadening gamma over theta in our data, we per-
formed a linear regression on the trial-wise estimates of theta–gamma coupling.  
The predictor (independent) variable was our simulated hypothesis (described 
above) and the dependent variable was a vector of observed coupling estimates.  
To construct the vectors of coupling values, for each trial, sensor and subject we 
averaged the coupling estimates across theta sub-bins so that there was a single  
coupling value per trial. We then performed a separate linear regression analysis 
(independent: model-predicted coupling value, dependent: trial-wise coupling esti-
mate) for each sensor and subject, resulting in subject-level topographic statistical 
maps (t-values) representing the fits of our model to the empirically observed cou-
pling estimates. Then to compute group-level statistics, we computed a t-statistic 
across subjects for each sensor (Fig. 1d). To correct for multiple comparisons, we 
derived a statistical threshold based on the size of a cluster of sensors compared 
to what one might expect by chance. For each sensor and subject, we shuffled the 
trial labels 1,000 times and then refit the model. Then we recomputed cluster sizes 
on each iteration to build a null distribution of maximum cluster sizes expected by 
chance and only retained clusters for which P < 0.05 of the null distribution of cluster 
sizes. Only clusters of sensors that exceeded this threshold were further analyzed.

To control for power differences across a sequence as a potential confound-
ing factor for the analyses described above, we performed a second regression  
analysis. A general linear model with theta and gamma power (as separate pre-
dictor variables) was constructed and regressed against the coupling estimates. 
We then refit our model (i.e., decreasing coupling by sequence position) to the 
residuals of this model. Thus any explanatory power that theta or gamma power 
had on theta–gamma coupling was removed (Supplementary Fig. 4).

Theta–gamma model source localization analysis. A linearly-constrained 
minimum-variance beamformer analysis53 was performed to estimate neural 
sources of the decreasing theta–gamma coupling by sequence position. Briefly, 
this technique utilizes an adaptive spatial filtering algorithm designed to estimate 
sources of neural activity originating from a spatial location in the brain given 
a particular topographic distribution of MEG activity by applying a unit gain 
constraint to the spatial location of interest and minimizing the contribution of 
all other sources. First, each subject’s data was registered to a canonical structural 
MPRAGE brain from the FSL software package54. This was achieved by aligning 
anatomical landmarks (nasion, left and right periauricular points) from digitized 
head shape data to the structural brain image for each subject. To estimate source-
space time series data, we used a combination of source analysis script from the 
Fieldtrip software package as well as custom Matlab scripts. A semirealistic head 
model was constructed following methods described by55. Using the MEG data 
from all trials (irrespective of sequence position), a common spatial filter was 
estimated for each point in a three-dimensional grid representing potential neural 
source locations with 1-cm spacing between points. The result of this analysis 
was a vector of spatial weights (1 × 157, i.e., the total number of MEG sensors) 
mapping the contribution of each sensor’s activity to a particular grid (i.e., brain) 
location. To derive source-space time series for each trial (−1 to 3.5 s), the matrix 
of sensor-level time series (157 sensors × 2,251 time points for each trial) was 
multiplied by the spatial weight matrix, resulting in a single time course for each 
source location for each trial.

Once the all the sensor-level data were projected into source space, we  
performed an analysis very similar to the sensor-level theta–gamma model fit 

analyses described above. For each trial (during stimulus presentation, 0 to 2.5 s) 
and source-space location, we bandpass filtered the data in the high gamma band 
(70–100 Hz, using the default filter settings of eegfilt.m) and computed gamma 
amplitude by taking the absolute value of the Hilbert transform of the filtered 
signal. Then we derived the theta phase time course by bandpass filtering the data 
in the theta frequency range (3–8 Hz; using default filter settings of eegfilt.m)  
and then computed the angle of the Hilbert transform of the filtered signal. 
The remainder of the analysis was identical to the sensor-level theta–gamma 
model fitting analyses described above. Briefly, for every subject, we computed 
theta–gamma coupling for each trial and source-space point and fit the theta–
gamma coupling source-space point to our model of decreasing theta–gamma 
coupling as a function of sequence position. To compute group-level statistics, 
we then computed t-statistics across subjects for every source-space point. The 
final product was a 3D source-space statistical map of t-values representing the 
group reliability of the fit of theta–gamma coupling to our model of decreasing 
coupling across sequence positions. Note that there is typically a center bias for 
beamformer source localization when a source is localized without respect to a 
baseline (i.e., before the stimulus period or another condition). Given that the 
regression analysis we ran is a linear contrast across sequence positions, this 
potential confound is likely not a contributing factor.

Phase analyses. We hypothesized that for items in different sequence positions, 
gamma power would be biased to different phases of theta, particularly when 
temporal order was successfully encoded. To test this, for each trial, we computed 
histograms of gamma power binned by theta phase (18 bins; power and phase com-
putations are described above in the “Cross-frequency coupling analyses” section) 
for each sensor. We then averaged across clusters of sensors that displayed a sig-
nificant fit to our model (i.e., decreasing coupling by sequence position, P < 0.05,  
cluster-corrected using our permutation procedure), which resulted in two clus-
ters (a left lateral cluster and a left posterior cluster), and then sorted sequences 
by subsequent temporal order memory. To test whether the theta-binned gamma 
distributions differed by sequence position, we used a Watson–Williams multi-
sample test for equal means implemented from the Circular Statistics Toolbox for 
Matlab56. This test is effectively a one-way ANOVA for circular-linear data. To 
compute significance of the interaction between position and sequence memory, 
we used a Harrison–Kanji test, a circular implementation of a two-way ANOVA. 
It should be noted that all phase analyses described in this section were statisti-
cally tested using circular-linear tests unless otherwise specified.

In a follow up analysis, we then averaged the trials into three bins by sequence 
position: 1&2 (early), 3&4 (middle) and 5&6 (late). Finally, we averaged the data 
across subjects. The result of this analysis was six histograms (for each cluster 
of interest) of gamma power binned by theta phase for early, middle and late 
sequence trials and for sequences where later temporal order was correct and 
incorrect (Fig. 3).

To compute theta phase locking (also known as intertrial phase coherence), 
we followed methods outlined in57 (see Fig. 3c in the referenced paper). Briefly, 
for each trial, we filtered the data at the theta frequency. Then we computed 
the Hilbert transform and normalized the resulting complex vectors to remove 
the amplitude component. Finally, for each time point, we computed the phase  
locking value by averaging the normalized vectors across trials for a given condi-
tion for each subject.

Testing for systematic shifts in theta phase by sequence position. Another 
possible alternative explanation for our result is that gamma power remains tem-
porally fixed with respect to the onset of the stimulus but there is a systematic shift 
in theta phase as a function of sequence positions, perhaps due to a reset in the 
phase of theta caused by the stimulus presentation. To test for a mechanism of this 
nature, we simulated sinusoidal time series at the theta frequency, in which the 
phase of theta systematically shifted over the sequence, and then computed the 
cross-correlation of the simulated time series for each pair of sequence positions 
(cross-correlation between 1–2, 1–3, 1–4, etc.). If a systematic theta phase shift 
was present in the data, then the peak cross-correlation should also systemati-
cally increase with increasing lag between items. An analysis of this ‘toy’ example 
concretized our intuition that the temporal lag of the peak correlation would 
increase with distance between sequence positions (Supplementary Fig. 12).  
We used this framework to test for a systematic phase shift in our data at the 
level of each sequence, and then on averaged peak lag values over sequences 
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and over subjects. We performed this analysis specifically for correct sequence, 
as that is where we observed the phase coding effects. The results did not reveal 
any evidence for a systematic theta phase shift across sequences (F4,84 = 0.33,  
P > 0.5; Supplementary Fig. 12). Thus, the phase–amplitude relationship is more 
likely to be driven by a shift in gamma across sequence positions rather than a 
phase shift in theta.

Testing for systematic changes in theta phase symmetry. Another possible 
explanation for PAC modulation by sequence position is that the shape of the theta 
waveform could change systematically, becoming more or less asymmetric over a 
sequence of items. While the exact pattern of expected results would vary based 
on the phase dynamics, oscillations with symmetric, sinusoidal phase dynamics 
would map to a circular distribution in polar coordinates, while asymmetric oscil-
lations would map to a noncircular distribution (Supplementary Fig. 13). To test 
whether an interaction between phase symmetry and sequence position could 
explain these effects, we filtered each trial in the theta band. Then we computed 
group-averaged phase–amplitude distributions in polar coordinates, averaging 
separately over each sequence position. The results suggest that the theta wave-
forms were equally symmetric over sequence positions (Watson–Williams test: 
F5,101 = 0.23, P = 0.94), but varied in power, which is evident by increasing area 
of the polar phase distributions by sequence position (Supplementary Fig. 13). 
This replicates the prior finding that theta power systematically increases over 
sequence positions. Thus, differences in phase symmetry are not likely to explain 
this pattern of results.

data availability. The data that support the findings of these studies are available 
from the corresponding author upon reasonable request.

code availability. The code used in these studies is available from the corre-
sponding author upon reasonable request.
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