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The ability to store information about the past to dynamically predict and prepare for the future is among the most funda-
mental tasks the brain performs. To date, the problems of understanding how the brain stores and organizes information
about the past (memory) and how the brain represents and processes temporal information for adaptive behavior have gener-
ally been studied as distinct cognitive functions. This Symposium explores the inherent link between memory and temporal
cognition, as well as the potential shared neural mechanisms between them. We suggest that working memory and implicit
timing are interconnected and may share overlapping neural mechanisms. Additionally, we explore how temporal structure is
encoded in associative and episodic memory and, conversely, the influences of episodic memory on subsequent temporal
anticipation and the perception of time. We suggest that neural sequences provide a general computational motif that con-
tributes to timing and working memory, as well as the spatiotemporal coding and recall of episodes.

Introduction
Memories are about the past but for the future (Tulving, 2005;
Schacter et al., 2007). Across types and timescales, memory influ-
ences cognition and perception, and guides sensory processing
and behavior (Duncan et al., 2012; Nobre and Stokes, 2019).
And, ultimately, it is the ability of animals to use information
about the past to predict and prepare for the future in an
adaptive manner that translates into the evolutionary cur-
rency of survival and reproduction. The dimension of time,
of course, is intrinsic to forming, organizing, and using in-
formation about the past to predict the future. Yet, the sci-
entific enquiries of memory and time have typically
proceeded independently. The result has been an impover-
ished understanding of each and the underappreciation of
their profound connection.

The temporal dimension is challenging, not only in the con-
text of neuroscience and psychology, but for scientific fields in
general. As scientific fields mature, they progressively incorpo-
rate and address the inherent challenges imposed by time and
dynamics. It is notable that what was arguably the first field of

modern science, geometry as formalized by Euclid, was so, pre-
cisely because Euclidean geometry is the study of spatial relation-
ships in the absence of change and time. Defining time has
remained a fundamental challenge at the crossroads of physics,
neuroscience, and philosophy (Buonomano and Rovelli, 2023),
being variously conceived as a metric of change (Aristotle), as
an absolute entity that flows uniformly without reference to
anything other (Newton), as derived from the structured relation
among entities and with no independent existence (Leibniz), and
as part of the dynamic and curving fabric of spacetime (Einstein)
(Carroll, 2010; Smolin, 2013; Buonomano, 2017; Rovelli, 2018).
Within the context of neuroscience and psychology, it is helpful to
note that time is generally an abstraction for change and that the
clocks we use to guide our experiments and theories are best con-
ceived as physical devices that change in some highly precise and
reproducible manner (Buzsáki and Llinás, 2017; Buzsáki and
Tingley, 2018).

The temporal dimension provides an essential axis for
building memories and drawing on both memoranda and
sensory signals to guide adaptive and flexible behavior pro-
actively. Change, synonymous with dynamics and flux, is
everywhere and an inherent feature of the world. Humans,
like other organisms, are “dynamic agents.” We move through
the environment, which itself is ever-changing. Our brains bro-
ker the relationship between our shifting mental states and the
varying sensory signals through unfolding neuronal activity
within multiple microcircuits, ensembles, and networks. Yet,
somehow, our theories and models of even the most fluid
aspects of cognition remain mostly static (Nobre and van Ede,
2023).
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In this review, we present work from across different domains
and species that examines the temporal structuring of informa-
tion processing and how it is encoded, maintained, and used to
guide behavior. We draw from our diverse experimental, theo-
retical, and computational backgrounds to exemplify important
points of contact between time and memory. We show that (1)
temporal regularities learned from the environment afford tem-
poral selective attention to guide anticipation, selection, and pri-
oritization of inputs, as well as the encoding of the temporal
relations between external events. (2) Within the context of
working memory (WM), both the contents of memory and the
timing of stimuli interact with each other and may be encoded
within overlapping circuits and mechanisms. (3) The relation
between successive external events also has important conse-
quences for partitioning extended experience into temporally
structured episodes, which ultimately ground and compose epi-
sodic memory. (4) Interestingly, the subjective temporal qualities
of resulting episodic memories become distorted, so that occur-
rences within an event are judged as temporally more proximal
than those that cross context boundaries. Finally, neural sequen-
ces in the hippocampus and other brain areas may serve as a fun-
damental motif for WM, elapsed time, and the ability to encode
the spatial and temporal structure of the episodes that comprise
autobiographical memory.

Time, neural sequences, oscillations, and memory
The survival and prosperity of an animal are afforded by the reg-
ularities and consistencies of the niche in which the animal lives.
These affordances allow for emulation and internalization of
world events by generalization from the past to the current situa-
tion to optimize future behavior. Thus, the concepts of past,
present, and future are intricately intertwined. For historical rea-
sons, we give them special names, including memory, timing,
and planning, and search for their allegedly distinct brain
mechanisms. We suggest that the organization of brain dy-
namics offers a mechanism to explain how the brain interprets
both the temporal and spatial relationships among objects and
events in the world. Neuronal networks constantly generate neuro-
nal sequences or trajectories. These internal sequences, embedded
into hierarchically organized brain rhythms, are well suited to emu-
late the multimodal spatial and temporal relationships afforded by
external events (Cisek, 2007), as well as the sequential structure of
episodic memory (Fig. 1A) (Buzsáki and Tingley, 2018; Buzsáki et
al., 2022; Buzsáki, 2010; Tsao et al., 2018; Clewett et al., 2019;
Heusser et al., 2016).

Time and space are postulated to play special roles in episodic
memory (Tulving, 1972; Squire, 1986). Episodic events have a
duration and take place somewhere. An episode is an unfolding
storyline in Newtonian space-time coordinates. In contrast to
this time-directed and segment-defined type of memory, declara-
ble semantic facts are abstracted punctate events. Semantic mem-
ories are gradually formed from multiple overlapping episodes
with common items (junctions) among the episodes (Buzsáki,
2005; Buzsáki and Moser, 2013). Through repetitions, the “what”
becomes invariant to the temporal and spatial conditions of the
individual episodes. For example, neurons participating in
hippocampal neural sequences have been designated as
“place cells” (O’Keefe and Nadel, 1978) and “time cells”
(Itskov et al., 2011; Eichenbaum, 2014). Yet, despite their
appeal, these terms can be misleading because evolving neu-
ronal sequences always also serve other functions rather
than just mapping locations or keeping time.

Neural sequences and oscillations
In the rodent hippocampus, neuronal activity is organized by a
6-10Hz theta oscillation and its pyramidal neurons are believed
to reflect particular constellations of the environment. The place
fields of several neurons overlap with each other over multiple
theta cycles during ambulation. In addition to this locomotion-
related overlap at the seconds scale, several place cells fire to-
gether in a given theta cycle such that the spike timing sequence
of neuronal assemblies predicts the sequence of passed and
upcoming locations in the animal’s path, with larger time (phase)
lags between spiking of place cells within the theta cycle repre-
senting larger distances (Skaggs et al., 1996; Dragoi and Buzsáki,
2006; Diba and Buzsáki, 2008). In other words, if we take a
“snapshot” over a single theta cycle, the spike sequences corre-
spond to the trajectory of place fields the animal has just passed
and is going to visit.

One interpretation of this relationship is that distances in the
world are transformed to durations in the brain (“spacetime” of
physics) on the assumption that the phase of spiking of hippo-
campal neurons are continuously “driven” by some external
cues. A problem with this interpretation is that the theta rhythm
is induced in the brain and its phase varies independently from
the external cues so that on repeated runs the phase of theta
varies randomly relative to the same spatial locations.

An alternative interpretation is that the primary mechanism
is an internally maintained dynamics in the hippocampus,
which, in turn, constrains how events in the world are matched
to preexisting dynamics (“timespace”). In support of this latter
interpretation, the time (theta phase) offsets in the hippocam-
pus remain similar in different size environments, so that the
same time segments (duration) between place cell spikes now
correspond to larger distances in larger environments (Diba
and Buzsáki, 2008). Further, when the frequency of theta oscil-
lation is reduced by cooling the medial septum, the distance-
duration compression is reduced, while the distance to theta
phase relationship is preserved (Petersen and Buzsáki, 2020).
From this perspective, the hippocampus can be viewed as a
spacetime zoom in which the neuronal resources are deter-
mined by internal dynamics (the number of cell assemblies and
the total number of spikes within theta cycles remain the same).

There is a clear parallel between spatial navigation and ep-
isodic memory, which can be referred to as mental or imag-
ined navigation back into the past (Tulving, 1972). A main
difference is that mental navigation does not depend on im-
mediate environmental or body-reafferent cues. It has been
postulated that neural mechanisms, which initially depended
on external cues in simple organisms, have become “internal-
ized” and disengaged from locomotion (Buzsáki, 2005; Buzsáki
and Moser, 2013). Without external constraints, disengaged
processing in complex brains can create an internalized virtual
world and generate new knowledge through vicarious or imag-
ined experience, tested against preexisting and stored knowl-
edge. The evolutionary exaptation of neuronal sequences from
navigation to memory can be demonstrated when a rodent is
explicitly trained in a memory task without the translocation
of the head and body, such as running in a wheel (Fig. 1B)
(Pastalkova et al., 2008). During running, spiking activity of
pyramidal neurons displays a continuous sequence during the
entire journey, with unique sequences for left and right
choices. Thus, one can predict the animal’s arm choice in the
maze (“what”) tens of seconds before it acts out the plan with
high accuracy, including maze arm choices on erroneous trials
(Pastalkova et al., 2008).
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From the evolving sequences, one can also calculate the
exact distance traveled by the animal against the units of a
ruler. Alternatively, one can compare the neural sequences
against the units of a clock and report the elapsed time from
the beginning of wheel running. This relationship prompted
the interpretation that there are “time cells” in the hippocam-
pus (Eichenbaum, 2014). One possible conclusion is that the
key coordinates of episodic memory (what, where, and when)
have been identified. However, in this prototype experiment,
there is only one neuronal mechanism, which is an internally

generated sequence. When the same exact neuronal sequence
is compared with future arm turns (what), units of rulers (dis-
tance), and clocks (time), it appears that they “represent” dif-
ferent things. This observation can also be extended to WM
and decision-making, since they have also been hypothesized
to be based on spike accumulation and neuronal sequences
(Gold and Shadlen, 2007; Stokes, 2015). Thus, while reference
to instrument-based units is essential to compare knowledge
across experiments and laboratories, it is useful to remind
ourselves that these socially agreed units are simply means of

Figure 1. A, Brain mechanism-based view of episodic memory: the hippocampus as a sequential multiplexed pointer. Indices that point to cortical modules for different inputs are
sequenced by evolving hippocampal activity patterns, thus preserving the directed ordinal structure over which experience occurred. Semantic content resides in cortical modules that are con-
catenated by the hippocampus during both encoding and recall. Aud, Auditory; Olf, olfactory; Som, somatosensory; Vis, visual. Adapted with permission from Buzsáki and Tingley (2018). B,
Sequential activation of neuronal assemblies in an episodic memory task. Middle, The rat was required to run in a running wheel for 15 s before choosing either the left or the right arm of the
maze based on the remembered last arm choice. It obtained a water reward if it chose the opposite of the previously chosen arm. Color-coded dots represent spike occurrences of simultane-
ously recorded hippocampal neurons. Left, Normalized firing-rate profiles of neurons during wheel running, ordered by the latency of their peak firing rates during left trials. Each line indicates
a single cell. Right, Normalized firing rates of the same neurons during right trials. An observer can infer the run duration (and distance) in the wheel as well as the future choice of the rat
from the same sequential firing patterns of the neurons. Adapted with permission from Pastalkova et al. (2008). C, Time detection on single trials using a time prediction model fit from all
other trials. In each time bin, elapsed time in the running wheel is inferred either from the population firing rate vector (red) or the firing phases of active cells with respect to the theta oscillation
(purple). In each case, the prediction approximates well the true time (black). D, Error of time estimation from population vector of neuronal activity in 3 rats. Rat 1 had,50 recorded neurons;
Rats 2 and 3 had.50 neurons. Note reliable estimation of running duration from neuronal activity. Adapted with permission from Itskov et al. (2011).
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communication and do not necessarily refer to unique and
exclusive brain mechanisms.

In the contemporary world, it would be hard to imagine and
organize human life without clocks. Yet, the concept of time is
useful for all brain operations since every neuronal operation
evolves “in time,” from coordination of muscle contractions dur-
ing reaching to thinking and perhaps even dreaming (Buzsáki and
Tingley, 2018; Nobre and van Ede, 2018; Paton and Buonomano,
2018; Tsao et al., 2022). Yet, time is immaterial and, therefore,
cannot be directly sensed or exert a direct impact on anything.
This is the complex background against which research on
“neuronal time” should be evaluated.

MultiplexingWM and elapsed time in neural sequences
Broadly speaking, the need to learn the temporal relations
between external events and anticipate them, engage in temporal
discounting and temporal wagering, conceptualize time, perform
mental time travel, and represent time in episodic memory, have
been referred to as different components of temporal cognition
(Sosa et al., 2021). Critically, many of these tasks require that
neural mechanisms be in place to tell time.

It is helpful to distinguish between tasks that require
explicit versus implicit timing (Coull and Nobre, 1998; Nobre
and van Ede, 2018). Explicit timing tasks require observers to
make judgments about the duration of events or intervals sep-
arating them, for example, by estimating, comparing, bisect-
ing, or reproducing temporal durations or intervals (Coull
and Nobre, 1998; Grondin, 2010; Ameqrane et al., 2014). In
contrast, implicit timing occurs when observers learn the tem-
poral structure in a task, such as the interval between stimuli,
although the task requires no direct temporal judgment.
Although not directly relevant, these learned temporal rela-
tionships influence performance, for example, by improving
stimulus detection or discrimination (Nobre and van Ede,
2018).

The mechanisms underlying how the brain performs compu-
tations akin to a timer continue to be debated. But it is now
widely accepted that in many cases the brain uses its own inter-
nal neural dynamics; that is, evolving spatiotemporal patterns of
neural activity that change in some reproducible way to encode
elapsed time (Buonomano and Mauk, 1994; Merchant et al.,
2013; Paton and Buonomano, 2018; Issa et al., 2020). Notably,
the same neural signatures that have been implicated in timing
have also been implicated in WM and decision-making (Stokes,
2015; Kozachkov et al., 2022; Gold and Shadlen, 2007; Shadlen
and Shohamy, 2016; Taxidis et al., 2020; Cueva et al., 2020).
Influential early studies suggested that WM is encoded in
steady-state persistent neural activity (Fuster and Alexander,
1971; Funahashi et al., 1989; Fuster et al., 2000), a fixed-point
attractor in the language of dynamical systems. More recent
studies, however, have suggested that WM may also be
encoded in time-varying patterns of neural activity (Stokes,
2015; Lundqvist et al., 2018).

The neural signatures that have been implicated in tim-
ing and WM include ramping activity and neural sequences
(Fujisawa et al., 2008; Pastalkova et al., 2008; Mello et al.,
2015; Stokes, 2015; Paton and Buonomano, 2018; Issa et al.,
2020). Additionally, both WM and timing have been proposed to
rely on short-term synaptic plasticity (Buonomano and Merzenich,
1995; Buonomano, 2000; Mongillo et al., 2008; Stokes, 2015;
Kozachkov et al., 2022), sometimes referred to as relying on the
hidden neural state in the context of the timing literature

(Buonomano and Maass, 2009), or as activity-silent mecha-
nisms in the of WM literature (Stokes, 2015).

The convergence of the models of WM and timing are a
direct consequence of their shared properties: they require tran-
siently storing information, retrospective information in the case
of WM and prospective information in the case of timing and
decisions (e.g., when a delayed reward will occur). To explore
this commonality directly, Zhou et al. (2023), following previous
work (van Ede et al., 2017), developed a variant of the standard
delay-match-to-sample (DMS) WM task that imposes an associ-
ation between WM content and implicit timing. In its simplest
form, a DMS task presents either of two cues (A or B) and, fol-
lowing a delay period, either of the two stimuli is presented
again, resulting in four conditions (AA, AB, BA, BB). In the dif-
ferential-delay-match-to-sample (dDMS) task, the identity of the
first stimulus predicted the delay duration (Fig. 2A): AA and AB
trials were associated with a 1 s delay, and BA and BB trials with
a 2.2 s delay. These delays are irrelevant to the performance of the
task itself, which simply required differential responses during
match and nonmatch trials. To determine whether participants im-
plicitly learned the temporal structure of the task, the cue-delay
contingency was reversed in 20% of the trials. Compared with
standard trials, the inverse efficiency (reaction time/accuracy) was
worse during reverse trials (Fig. 2B), indicating that not only did
participants implicitly learn the task-irrelevant cue-delay associ-
ations, but that violations of the expected delay impaired WM
performance.

To gain insights into the potential trade-offs between the
diverse neural signatures associated with both WM and timing,
Zhou et al. (2023) trained recurrent neuronal networks (RNNs)
to perform the dDMS task. Since the psychophysical data estab-
lished that participants learned the cue-delay association, the
RNNs were trained to drive two outputs: one that performed the
match/nonmatch response and one that anticipated the delay du-
ration, representing implicit timing (Fig. 2C). Interestingly, the
dominant neural dynamic regimen that emerged in the RNN
were neural sequences; specifically, the A and B cues elicited dis-
tinct sequential neural trajectories. Because each cue elicited dis-
tinct time-varying trajectories, the dynamics of the network
effectively multiplexed the encoding of WM content (the first
cue) and elapsed time.

It is relevant to note that, while neural sequences were the
dominant dynamic regimen observed in the RNNs, some model
parameters led to ramping dynamics. Thus, it is important to
understand the potential computational advantages and disadvan-
tages of these apparently distinct dynamic regimens. Low-dimen-
sional, largely linear regimens, such as ramps, provide a code that
is more amenable to generalization to novel delays; it is relatively
easy for output neurons to learn to decode the cue from the ramp-
ing activity during any stage of the ramp (Cueva et al., 2020). In
contrast, neural sequences require more sophisticated decoding or
training to generalize to all delays. In the RNNs simulated in
Figure 2, generalization to novel delays was robust because more
than one delay was presented during training (standard and rever-
sal trials). Because of their low dimensionality, however, ramps are
not well suited to generate arbitrary temporal output patterns,
including a simple step function. In contrast, neural sequences are
ideally suited to generate arbitrary temporal output patterns, even
while using biologically plausible decoding mechanisms, because
the dynamics is high-dimensional and quasi-orthogonal; essen-
tially, there is little overlap in the “time fields” of different units
(Zhou et al., 2020, 2023). Interestingly, analyzing the evolution of
the RNNs dynamics over the course of training on the dDMS task
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(Fig. 2) revealed that the dynamics transitioned from a regimen
dominated by low-dimensional ramping to high-dimensional neu-
ral sequences. These observations suggest that these apparently
distinct neural signatures may be able to transition smoothly from
one to another depending on the extent of training and the com-
putational requirements of the task at hand. These results thereby
extend the proposal of the utility of neural sequences to include
providing a shared neural dynamic regimen for encoding time
and WM, in addition to the role in navigation and episodic mem-
ory discussed above (and below).

Memory and attention in time
We are active agents immersed in dynamically unfolding environ-
ments. Although the boundless incoming stream of information is
ever new, not all of it is unpredictable. Consistent relationships
among the attributes of events carry predictions that guide proac-
tive sensory and motor preparation in the brain. The same holds
for the temporal structuring of events. Recurring temporal struc-
tures enable proactive and temporally selective preparation for
anticipated relevant events. The field of selective attention has
uncovered many mechanisms by which the brain anticipates and
selects relevant events to guide adaptive perception and action —
for example, the filtering of competing sensory inputs, the upregu-
lation of firing rates, and interareal synchronization. At the core of

most of these mechanisms is the modulation of neuronal activity
and of neuronal communication based on receptive-field proper-
ties, leading to the prioritization of items that occur at the relevant
location or contain a relevant feature. Thus, we have come to a rel-
atively advanced understanding of still frames, or snapshots, of
attention. However, how the brain can use predictable temporal
structure to anticipate and select relevant events immersed in the
continuous flow of stimulation remains puzzling. As attention is,
by definition, a dynamic process, we need to add “time” to under-
stand attention fully. Similarly, our views of memory have also
been dominated by fairly static frameworks, but recent studies
demonstrated that not only are attention and memory dynamic
processes, but they recursively influence each other (Nobre and
Stokes, 2019).

Incidental, implicit learning of temporal structures within
WM tasks results in temporal expectations that guide prioritiza-
tion and access to WM contents at moments when they are most
relevant (van Ede et al., 2017; van Loon et al., 2017; Zokaei et al.,
2019; Jin et al., 2020). van Ede et al. (2017) provided a powerful
example of this by embedding temporal structure in the expected
recall times of a visual WM task (Fig. 3A). Two randomly ori-
ented lines of different colors (orange or blue) were simultane-
ously presented and, after a delay period, participants had to
report the angle of the line that matched the color of a probe cue.

Figure 2. A, Schematic of the dDMS task (left). Inverse efficiency (RT/accuracy) of human subjects on the dDMS task across Standard (cyan) and Reverse (orange) trials. The short and long
delays correspond to the actual delay epochs. There was a significant main effect of Standard versus Reverse trial (n¼ 27, F1,26 ¼ 9.05, p, 0.01). B, Schematic of the RNN architecture and
the inputs and target outputs for the dDMS task during the control and reverse conditions. C, Neurograms during the AA (top row) and BA (bottom row) conditions (A, red line above neuro-
gram; B, green), sorted according to the peak time during the short (left) or long (right) delays (standard trials). The self-sorted neurograms (top left and bottom right) are cross-validated (av-
erage of even trials sorted on average of odd trials). The overlaid white and gray lines indicate the “motor” unit (right y axis) and “temporal expectation” output unit, respectively.
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In 80% of the trials, the probe to reproduce the orientation of
one of the colored lines (e.g., orange) appeared after a short delay
(1.25 s) and the probe to reproduce the orientation of the other
colored line (e.g., blue) appeared after a long delay (2.5 s). In a
20% minority of trials, this relationship was reversed, and a
probe appeared at an improbable interval. Temporal expecta-
tions had a profound influence on WM performance, leading to
faster access times as well as more accurate orientation recall for
items that were probed at expected times. Furthermore, this
dynamic prioritization was associated with the temporally spe-
cific attenuation of contralateral a (8-14Hz) oscillations that,
moreover, predicted WM access times on a trial-by-trial basis.
These experiments demonstrated that attentional prioritization
inWM can be dynamically steered by internally guided temporal
expectations and that the neural mechanisms for accessing items
fromWM can be time-varying.

The interaction between temporal attention and WM goes
beyond the dynamic prioritization for access to items in WM.
Learned temporal structures can also help shield WM items
from sensory interference (Gresch et al., 2021). Protecting WM
content from distracting external sensory inputs and intervening
tasks is a ubiquitous demand in daily life. Gresch et al. (2021)
manipulated the temporal predictability of interfering items that
occurred during the retention period of a visual WM task.
Specifically, while participants maintained two colored lines in
WM for an orientation-reproduction task like the one described
above, an interfering oriented line was presented at a fixed or vari-
able interval, depending on the experimental block. Participants
could either ignore the interfering line (distraction) or had to dis-
criminate its orientation (interruption) depending on the task con-
dition. The predictable temporal structure of the fixed-interval
blocks improved WM performance, as indicated by smaller angle

Figure 3. Results showing flexible temporal anticipation for WM retrieval (A) and based on long-term memory (B). A, Task schematic and behavioral results in the study by van Ede et al.
(2017). Participants encoded two randomly oriented lines presented for 250 ms on the left and right of fixation. Lines were colored light orange and blue, and their side was random. After a
short (1250 ms) or long (2500 ms) delay, a central probe prompted participants to reproduce the orientation of one of the lines. Color of the probe handle represents the item to be reproduced.
The main manipulation was that the probability of being probed about the orange or blue item varied over time. Items presented in one of the colors was more likely (80% probability) to be
probed after the short delay, and items in the other color were more likely to be probed after the long delay. Schematic represents the case in which the orange item is likely to be probed ear-
lier and the blue item to be probed late. Participants had unlimited time to activate the reproduction response by clicking the mouse but then had limited time (2500 ms) to complete the
response, thus yielding a decision response time and an angular error for the response in each trial. Decision times indicated that reproduction responses started earlier when participants were
probed about the temporally expected items (red placeholders) at both short and long intervals. Angular errors were also smaller when retrieving the temporally expected item (red placehold-
ers). Note the flexible reprioritization of items, such that colored items yielded slower and less accurate responses when unexpectedly probed early but fast and accurate responses when probed
later, when expected. B, Task schematic and results from Cravo et al. (2017, their Experiment 1). In a learning session, participants viewed scenes in which a placeholder cartoon bomb
appeared after 1500 ms. For a given scene, the bomb changed color after either a short (800ms) or long (2000 ms) interval. Participants made a speeded response if the target turned blue
(80% of trials, go target) and withheld from responding if the target turned red (20%, no-go targets). Over five blocks, participants learned the implicit temporal associations between scenes
and intervals, with responses becoming faster and more accurate over blocks. A temporal-orienting task was performed after learning. The interval between placeholder and target matched
that in the learning task on the majority (67%) of the trials (valid memory cues) but was reversed in the remaining trials (33%, invalid memory cues). Response speed and sensitivity were sig-
nificantly improved when targets occurred at their learned long-term memory intervals. Both reaction times and perceptual sensitivity were better for targets following Valid (V) than Invalid
(I) memory cues. The grand-averaged CNV potential was localized over the frontal temporal scalp and was strongly modulated by the temporal association. The CNV developed earlier and was
steeper after scenes associated with short placeholder-target delays (red line) compared with long placeholder-target delays (gray line).
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errors in the fixed compared with variable blocks. To determine
whether the protective effects of temporal expectations rely on dis-
tractor suppression or involve shielding of internal representa-
tions, the authors compared effects after interfering distractor
stimuli that could be ignored versus after interfering interrupter
stimuli that required a response. Whereas distractor suppression
may be sufficient to confer protection from predictable distractors,
any benefits after interruption are likely to involve memory shield-
ing. Similar benefits of temporal expectations were observed after
both types of interference, suggesting that implicitly learned tim-
ings can dynamically shield WM contents.

The interaction between time and memory is not limited to
the short-term scale of WM. The fundamental role that our
long-term memories play in guiding perception is increasingly
recognized, but again these interactions have focused primarily
on static spatial relationships and have often neglected their tem-
poral and dynamic nature. To fill this gap, Cravo et al. (2017)
asked whether long-term memories can guide attention proac-
tively and dynamically based on learned temporal associations.
In two studies, participants learned to detect or discriminate tar-
get events within unique scenes (the change of color of a place-
holder cartoon bomb) and make a speeded response. During a
training session, the target event consistently occurred after ei-
ther a short or long delay (800 or 2000ms) within any given
scene (Fig. 3B). To determine whether participants implicitly
learned and used the interval associations to guide performance,
a subsequent testing phase included trials in which the target
event occurred at the predictable, learned interval (valid memory
cue; 67%) or the other, nonlearned interval (invalid memory cue;
33%). Participants were significantly faster and more sensitive to tar-
gets occurring at the previously learned intervals.

This memory-guided orienting of attention in time was
further corroborated by concurrent EEG recordings of a classic
electrophysiological marker of temporal anticipation (the contin-
gent negative variation [CNV]), which developed more steeply
when targets were expected after a short interval than when they
are expected after a long interval. Importantly, how well a mem-
ory was stored influenced not only the benefit in performance
but also the CNV amplitude. While the neural correlates of the
CNV are not fully understood, they may reflect neural ramping
activity observed in some timing andWM experiments (Brody et
al., 2003; Leon and Shadlen, 2003; Macar and Vidal, 2003; Pfeuty
et al., 2005). Future concerted efforts between animal, human,
and computational approaches should further characterize the
neural dynamic regimens associated with CNVs, and the degree
to which timing, anticipatory attention, WM, and recall of long-
term memories exhibit shared neural signatures, such as ramping
and neural sequences.

These and other findings (Nobre and van Ede, 2018; van Ede
and Nobre, 2023) emphasize the ecological role that memories
play not only in storing information but also in anticipating
future events and preparing perception. Specifically, rather than
emphasizing their reflective and retroactive role of reconstitut-
ing, or re-membering past events, they highlight the proactive
role they play in predicting and preparing perception dynam-
ically by “pre-membering” anticipated events. Furthermore,
long-term memories underlie our ability to learn temporal rela-
tionships between events in the external world, and use these
memories both to anticipate future events and to prioritize access
to or protection of memory content at the expected moments. As
sensory experience unfolds, the sequences of changes in the
incoming sensory stimulation and their temporal relations inter-
act with internal states to create the episodic events that ground

our autobiographical memories. Timing and memories also ex-
hibit important and interesting interactions at this broader, more
extended timescale.

Episodic memory affects the perception of time, and the
perception of time affects episodic memory
The everchanging outside world is accompanied by an orchestra
of internal neural trajectories that respond to and anticipate
external environmental features. How do these trajectories come
to mark the beginning, middle, and end of episodic events? How
does the brain know how to organize items in the world into
causal units or events? While we do not have the answer to this
question, we have learned a lot about what kinds of change the
hippocampus and cortex are most sensitive to and how these
“change detectors,” if you will, have reliable and robust effects on
the organization of our memories.

Identifying how the brain extracts and represents an over-
arching structure from experience is fundamental to our under-
standing of episodic memory. But what defines an “episode” in
episodic memory? Through the use of a novel paradigm, referred
to here as the Ezzyat-DuBrow-Davachi Paradigm (Fig. 4A), it
has repeatedly been shown behaviorally that context, broadly
defined as shifts in goal states, influences how we perceive and
remember discrete events. Context shift or boundaries can be
imposed by changing location, switching from viewing images of
people to objects, or even rewording a narrative from “... moment
later ...” to “... a while later ....” These context shifts influence
whether items appearing on either side of an event are bound to-
gether or not, affecting memory for their order (Fig. 4B) (Ezzyat
and Davachi, 2011, 2014; DuBrow and Davachi, 2013, 2014,
2016). Critically, context shifts also modulate our retrospective
perception of time, leading to subjective time dilation (Ezzyat and
Davachi, 2014; Lositsky et al., 2016).

Neuroimaging studies using fMRI reveal how event bounda-
ries shape memory representations in the brain. This work has
identified neural measures of event organization that predict the
temporal organization of events in long-term memory (Ezzyat
and Davachi, 2014; DuBrow and Davachi, 2016). The hippocam-
pus, medial temporal cortical regions, and the PFC play essential
roles in memory formation and integration (Eichenbaum, 2004;
Howard and Eichenbaum, 2013). The gist of this work is that,
while context is somewhat stable, more slowly changing, the
items we encounter are maintained in similar, more slowly
changing, neural states. Indeed, we see a network of regions,
including medial temporal lobe regions and mPFC, which shows
that univariate activation increases across items within an event
and then drops off at context shifts, mirroring the ebb and flow
analogy of the contexts themselves (Ezzyat and Davachi, 2011).
Within these more stable events, furthermore, MEG has shown
theta-g coupling that is present only when participants remem-
ber the correct temporal order of presented items in the Ezzyat-
DuBrow-Davachi Paradigm (Heusser et al., 2016). Finally, in
addition to activity increasing and decreasing over time, the sta-
bility in hippocampal multivoxel patterns across time is corre-
lated with temporal integration in memory (Ezzyat and Davachi,
2014).

The recruitment of different neuronal ensembles appears to
have a strong bearing over whether memories become segregated
or integrated. Recent rodent and human work also shows that in-
formation may become integrated through overlapping contexts
and neural ensembles. If events are experienced close enough or
in similar contexts (e.g., two halves of a movie), they can become
integrated into a unified memory representation (e.g.,
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representation of entire movie) (Cai et al., 2016; Lositsky et al.,
2016; Tsao et al., 2018). On the other hand, the acquisition of
more distinct hippocampal timestamps may contribute to
temporal pattern separation processes that differentiate mem-
ories of repeated exposures to the similar spatial/perceptual
context. Temporal context signals thereby inform the separa-
tion or integration of events depending on whether an indi-
vidual’s goal is to build a coherent memory regardless of when
things are learned or to minimize memory interference
between perceptually overlapping events.

In sum, the structure of our episodic memories is strongly
influenced by WM processes that are present during our experi-
ences. What we attend to, and in what order, shape how we
remember the past. Reversing the order by the brain leads to false
memories. Importantly, however, these processes interact with
an underlying representation of the overall context and the

affordances each context offers. These processes influence our
memory for the temporal order of events and may also contrib-
ute to memory-based temporal anticipation effects in attention.
In addition, they also contribute to more subjective aspects of
temporal memory, such as how long an event took. We remem-
ber items from the same event as having occurred closer in time
compared with items from across event boundaries, even if the
same amount of “clock” time has passed. Somewhat counterin-
tuitively, however, experiences containing a lot of change lead to
the perception of time passing quickly and shorten the actual du-
ration of events in memory (Sherman et al., 2023). Thus, across
the ongoing work on episodic event segmentation, results have
yielded valuable insights about the close interrelation between
temporal processing and memories over different time scales to
integrate and separate the continual flux of sensory experience
into the meaningful events. The sensory, mnemonic, and temporal

Figure 4. A, Ezzyat-DuBrow-Davachi paradigm for studying the effect of event boundaries on episodic memory. B, Memory for the correct temporal order of items is significantly better
when judging within context pairs (right). When asked to judge whether pairs of items were close or far apart, participants were more likely to rate items separated by the same distance as
close when the pair was within the same context, and as “far” across contexts (right). Adapted with permission from Ezzyat and Davachi (2011); DuBrow and Davachi (2013, 2014, 2016);
Heusser et al. (2016); Clewett et al. (2019).
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factors building the events also interact closely in shaping the sub-
jective nature of the resulting episodic memories.

Conclusions and open questions
The quest to understand the nature of memory across its numer-
ous forms and timescales has remained one of the most intense
activities of neuroscience and psychology. In contrast, we are
only now coming to realize that any general theory of memory
must also address the neural mechanisms underlying temporal
processing and temporal cognition. It is unfortunate that these
two fields developed mostly in parallel rather than in an inte-
grated fashion. Here we have drawn from heterogeneous emerg-
ing lines of research at different scales of granularity and
methods to demonstrate that memory and time are fundamen-
tally interconnected, not only because memory ultimately serves
the future, but because they are embedded in recursive loops:
long-term memory guides temporal expectations of the world
around us, and those expectations prioritize and shield informa-
tion in WM as well as influence what is stored in long-term
memory. Furthermore, we have also highlighted converging evi-
dence from animal, human, and computational studies suggest-
ing shared neural signatures in temporal cognition and memory.
We conclude by suggesting a number of points and open ques-
tions that we believe are important for unifying the fields of
memory and timing.

• WM should not be viewed as a unitary mechanism, but as a
family of different mechanisms that may depend not only on
the task, but on brain areas as well. Particular attention
should be paid to the temporal structure of the WM tasks
used. Indeed, studies indicate that different neural signatures
of WM are observed depending on whether the delays are
fixed or randomized (Inagaki et al., 2019; Park et al., 2019).
Furthermore, in some situations, WM and the encoding of
implicit elapsed time may be multiplexed; and in turn, the
neural mechanisms underlying timing may be used to pri-
oritize or shield items in WM.

• A hierarchy of oscillations and network dynamics provide
an inherent reference mechanism to coordinate and encode
events across brain regions and relate neuronal operations
to reference world events (Buzsáki, 2010; Tsao et al., 2018).
How the multitude of oscillations interact with, and guide,
neural sequences and ramping activity across different brain
areas remains a puzzle. Furthermore, similar neural motifs,
including neural sequences and ramps, have been observed
across brain areas with dramatically different circuit archi-
tectures, including areas that lack excitatory to excitatory
connections, such as the striatum and cerebellum (Paton
and Buonomano, 2018), suggesting that these neural signa-
tures may represent fundamental computational motifs.

• Neural sequences have now been reported in a wide range of
areas, ranging from area HVC in the songbird to the hippo-
campus, striatum, and neocortex. The high dimensional nature
of neural sequences makes them ideally suited to encode and
generate arbitrarily complex information, including elapsed
time and the episodes that comprise our autobiographical
memories (Buonomano, 2005; Buzsáki and Tingley, 2018;
Zhou et al., 2020; Buzsáki et al., 2022).

• Episodic memory and temporal cognition are deeply inter-
twined as the temporal structure of experienced events influ-
ences what is stored in episodic memory, and what is stored
in episodic memory, in turn, influences our retrospective
perception of time. Future work should specifically address

the neural mechanisms underlying the link between this re-
ciprocal interaction, but we note that hippocampal neural
sequences in conjunction with hippocampal-neocortical
interactions may serve as a common motif for both episodic
memory and temporal judgments (Clewett and Davachi,
2017; Buzsáki and Tingley, 2018; Paton and Buonomano,
2018; Clewett et al., 2019; Buzsáki et al., 2022).
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